
In: Proc. of 7th COLD METAL FORMING Conference ( Ed. D. Banabic), May 11-12, 
2000, Cluj Napoca, Romania, pag. 217-224. (http://www.utcluj.ro/conf/tpr2000) 
___________________________________________________________________________ 

 
 
 
 

A NEW YIELD CRITERION FOR 
ORTHOTROPIC SHEET METALS 
UNDER PLANE-STRESS CONDITIONS 
 
D. Banabic, T. Balan, D. S. Comsa 
Technical University of Cluj-Napoca, Romania 

Abstract 

The paper presents a new yield criterion for orthotropic sheet metals under plane-stress 
conditions. The criterion is derived from the one proposed by Barlat and Lian in 1989. Two 
additional coefficients have been introduced in order to allow a better representation of the 
plastic behaviour of the orthotropic sheet metals. The predictions of the new yield criterion 
are compared with the experimental data for two materials. 
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1 Contents 

The computer simulation of sheet metal forming processes needs a quantitative description of 
plastic anisotropy by the yield locus of the material. For taking into account the anisotropy, 
the von Mises classical yield criterion must be modified. A presentation of the historical 
development of the anisotropic yield criteria may be found in [1, 2]. 

In this work, the precise description of complex yielding behaviour exhibited by 
sheet metals is approached from the theoretical viewpoint. A new yield criterion combining 
the advantages of the Barlat and Karafillis-Boyce criteria is developed. The ability of the new 
criterion to represent the plastic behaviour of orthotropic sheet metals is investigated. 

 

2 Equation of the yield surface 

A yield surface is generally described by an implicit equation of the form 
 

(1) 
 

where σ  is the equivalent stress and Y is a yield parameter. In practice, Y may be chosen as 
one of the following parameters of the sheet metal: s 0

exp (uniaxial yield stress along the 
rolling direction), s 90

exp (uniaxial yield stress along the transverse direction), s 45
exp (uniaxial 

yield stress at 45° from the rolling direction), an average of s 0
exp, s 90

exp and s 45
exp, or s b

exp 
(equi-biaxial yield stress). The equivalent stress is defined by the following relationship: 

( ) 0:, =−=Φ YY σσ
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(2) 

 
where a, b, c, and k are material parameters, while G and ?  are functions of the second and 
third invariants of a fictitious deviatoric stress tensor s' which will be described later on. One 
may notice that the above expression of the equivalent stress is derived from the one proposed 
by Barlat and Lian for orthotropic materials under plane-stress state [3]. Two additional 
parameters, namely b and c, have been introduced in order to allow a better representation of 
the plastic behaviour of the sheet metal. The convexity of the yield surface described by Eqns 
(1) and (2) is ensured if a ∈ [0, 1] and k is a strictly positive integer number. 
 As we have already mentioned, G and ?  are functions of the second and third 
invariants of a fictitious deviatoric stress tensor s'. This tensor is related to the actual stress 
tensor s  by the Karafillis-Boyce linear transformation [4]: 

 
(3) 

 
 

where d, e, f, and g are also material parameters. The components of the stress tensors in Eqns 
(3) are expressed  in  the system of orthotropic axes (1 is the rolling direction - RD, 2 is the 
transverse direction - TD, and 3 is the normal direction - ND). 
 The second and third invariants of the deviatoric tensor s' have the following 
expressions: 

 
(4) 

 
where the Greek indices take the values 1 and 2. The quantities 

 
(5) 

 
are not affected by the rotations that leave unchanged the third axis (ND). Thus, in the case of 
the plane-stress of sheet metals, we can use I'2 and I'3 instead of J'2 and J'3 in order to define 
the functions G and ? . We have adopted the following expressions for these functions: 

 
 

(6) 
 

By using Eqns (6), (5) and (3), we can express G and ?  as exp licit dependencies of the actual 
stress components: 

 
(7) 

where 
 

(8) 
 

 The above equations show that the shape of the yield surface is defined by the material 
parameters a, b, c, d, e, f, g, and k. From these parameters, k has a distinct status. More 
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precisely, its value is set in accordance with the crystallographic structure of the material [5]: 
k = 3 for BCC alloys, and k = 4 for FCC alloys. The other parameters are established in such a 
way that the constitutive equation associated to the yield surface reproduce as well as possible 
the plastic behaviour of the actual material. The procedure used for identifying the parameters 
a, b, c, d, e, f, and g is described in §4. 

3 Flow rule 

The flow rule associated to the yield surface presented in §1 is 
 

(9) 
 
 

where p
αβε&  are in-plane components of the plastic strain-rate tensor, and ? = 0 is a scalar 

multiplier. The values of the non-planar components of the plastic strain-rate tensor are 
restricted by the plane-stress condition and the isochoric character of the plastic deformation: 

 
(10) 

 
Assuming a purely isotropic hardening of the material, only one scalar state parameter is 

needed in order to describe the evolution of the yield surface. This parameter is the so-called 
equivalent plastic strain computed as a time- integral of the equivalent plastic strain-rate: 

 
(11) 

 
 

The equivalent plastic strain-rate is defined by equating the power developed by to the stress 
tensor and the power associated to the equivalent stress: 

 
(12) 

 
Using the homogeneity of the equivalent stress (see Eqn (2)), one can prove that the scalar 
multiplier ? is in fact the equivalent plastic strain-rate. Thus, the flow rule (9) takes the 
following form: 

 
(13) 
 
 

4 Identification procedure 

The parameters a, b, c, d, e, f, and g in the expression of the equivalent stress are established 
in such a way that the constitutive equation associated to the yield surface reproduce as well 
as possible the following characteristics of the orthotropic sheet- metal: s 0

exp (yield stress 
obtained by a uniaxial tensile test along RD), s 90

exp (yield stress obtained by a uniaxial tensile 
test along TD), s 45

exp (yield stress obtained by a uniaxial tensile test along a direction equally 
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inclined to RD and TD), s b
exp (yield stress obtained by an equi-biaxial tensile test along RD 

and TD), r0exp (coefficient of plastic anisotropy associated to RD), r90
exp (coefficient of plastic 

anisotropy associated to TD), and r45
exp (coefficient of plastic anisotropy asociated to a 

direction equally inclined to RD and TD). There are as many conditions as the material 
parameters in the expression of the equivalent stress. Thus it is possible to obtain their values 
by solving a set of seven nonlinear equations. But this is a difficult approach, because the set 
of equations has multiple solutions. After several trials and comparisons with experimental 
data, we have concluded that the best solution is to avoid the strict enforcement of the 
restrictions mentioned above. A more effective strategy of identification is to impose the 
minimization of the following error function: 

 
 

 
(14) 

 
 
 

 
where s 0, s 90, s 45, s b, r0, r90, and r45 are the uniaxial yield stresses, the equi-biaxial yield stress 
and the coefficients of plastic anisotropy predicted by the constitutive equation. In order to 
use the function defined by Eqn (14) in a minimization procedure, we need some formulas for 
calculating these quantities. 
 
4.1 Prediction of the uniaxial yield stress 
 
Let s f  > 0 be the yield stress obtained by the uniaxial  tensile  test  of  a  specimen  cut at an 
angle f  ∈ [0, 90°] with the rolling direction. In this case, the non-zero components of the 
stress tensor s  (expressed in the system of orthtropic axes) are given by the following 
relationships: 

 
(15) 

 
Eqns (1), (2), (7), and (15) allow the obtention of a formula for evaluating the uniaxial yield 
stress at different angles with the rolling direction: 

 
(16) 

 
 

where 
 
 

(17) 
 

 
4.2 Prediction of the equibiaxial yield stress 
 
Let s b > 0 be the yield stress obtained by an equi-biaxial tensile test along RD and TD. The 
in-plane components of the stress tensor s  are in this case as follows: 
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(18) 

 
Eqns (1), (2), (7), and (18) lead to a formula for evaluating the equibiaxial yield stress: 

 
(19) 

 
 

 
where 

 
(20) 

   
4.3 Prediction of the r-coefficients 
 
The coefficient of plastic anisotropy associated to a direction inclined at an angle f  ∈ [0, 90°] 
with the rolling direction is defined as follows: 

 
(21) 

 
 

where p
°+90ϕε&  is the component of the plastic strain-rate tensor associated to a direction 

perpendicular to the longitudinal axis of the tensile specimen, and p
33ε&  is the component of the 

same tensor associated to DN. By using the volume constancy condition, we can rewrite 
Eqn(21) in the form 

 
(22) 

 
 

 
where p

ϕε&  is the component of the plastic strain-rate tensor along the specimen axis. Further 

on, p
ϕε&  may be written as 

 
(23) 

 
By using Eqns (22), (23), (13), (1) and the homogeneity of the equivalent stress, we arrive at 
the following expression of the plastic anisotropy coefficient 

 
(24) 

 
 
 

where s f  is given by Eqn (19) and 
 

0, 21122211 ==== σσσσσ b

( ) ( ) ( )( )[ ] kk
b

k
bb

k
bb

b

cBacBbAacBbAa

Y

2
1

222 21−+−++
=σ

QPBNMA bb +=+= ,

p

p

r
33

90

ε

εϕ
ϕ &

& °+=

1
2211

−
+

= pp

p

r
εε

εϕ
ϕ &&

&

ϕϕεϕεϕεεϕ cossin2sincos 12
2

22
2

11
pppp &&&& ++=

1

22112211

−

















∂

Ψ∂
+

∂
Ψ∂

Ψ∂
Φ∂

+







∂

Γ∂
+

∂
Γ∂

Γ∂
Φ∂

=

σσσσ
σ ϕ

ϕ
Y

r



In: Proc. of 7th COLD METAL FORMING Conference ( Ed. D. Banabic), May 11-12, 
2000, Cluj Napoca, Romania, pag. 217-224. (http://www.utcluj.ro/conf/tpr2000) 
___________________________________________________________________________ 

 
 
 
 

 
(25) 

 
 
 
 
 
 

Eqns (16), (19) and (24) are used in order to evaluate the quantities involved in the error 
function F. We have adopted the downhill simplex method proposed by Nelder and Mead [6] 
for the numerical minimization, because it does not need the evaluation of the gradients. The 
minimization procedure has been implemented into a computer programme written in the C 
language. The numerical results presented in the next section have been obtained using this 
programme. 
 

5 Comparison with experiments 

The predictions of the new yield criterion have been tested for two sorts of sheet metals: 
A6XXX-T4 and SPCE. The theoretical results have been compared with the experimental 
data published in [7, 8]. 
 Table 1 shows the experimental values needed as input data by the computer 
programme used for the numerical identification of the material parameters involved in the 
expression of the yield criterion. 
 

Table 2 shows the values of the material parameters a, b, c, M, N, P, Q, and R 
obtained by numerical identification for the two sorts of sheet metals. The corresponding 
values of k and Y are also presented for completeness. 
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Table 1. Experimental values used as input data for the 
numerical identification of the material parameters for 
A6XXX-T4 and SPCE sheet metals 

  A6XXX-T4 SPCE 
s 0

exp 

s 90
exp 

s 45
exp 

s b
exp 

r0
exp 

r90
exp 

r45
exp 

Y 
k 

[MPa] 
[MPa] 
[MPa] 
[MPa] 

 
 
 

[MPa] 

125 
122 
123 
121 
0.78 
0.53 
0.47 
125 

4 

180 
184 
188 
184 
2.01 
2.42 
1.52 
180 

3 
 

 

Table2. Material parameters for A6XXX-T4 and SPCE 
sheet metals obtained by numerical identification 
 

  A6XXX-T4 SPCE 
a 
b 
c 
M 
N 
P 
Q 
R 
k 
Y 

 
 
 
 
 
 
 
 
 

[MPa] 

0.6512 
0.9521 
0.0987 
0.4881 
0.5659 
5.2209 
-5.2598 
98.6719 

4 
125 

0.2115 
0.9941 
0.8390 
0.5811 
0.5571 
0.5923 
-0.5803 
1.1548 

3 
180 
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Fig. 1. Yield surface for A6XXX-T4 
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Fig. 2. Yield surface for SPCE 
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Fig. 3. Distribution of the uniaxial yield        
           stress for A6XXX-T4 
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Fig. 4. Distribution of the uniaxial yield 
           stress for SPCE 
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The yield surfaces predicted by the new yield criterion for the A6XXX-T4 and SPCE sheet 
metals are presented in Figures 1 and 2, respectively. The experimental data are also plotted 
on the diagrams. The predicted distribution of the uniaxial yield stress with respect to the 
angle with the rolling direction  is  shown  in  Figures  3  and  4  for A6XXX-T4 and SPCE 
sheet metals, respectively. The predicted distribution of the r-coefficient with respect to the 
angle with the rolling direction  is  shown  in  Figures  5  and  6  for A6XXX-T4 and SPCE 
sheet metals, respectively.  
 
 
6 Conclusions 
 
A new yield criterion derived from the one introduced by Barlat and Lian [3] has been 
proposed. The new criterion has an increased flexibility due to the fact that it uses seven 
coefficients in order to describe the yield surface. The minimization of an error-function has 
been used for the numerical identication of the coefficients. The predicted yield surfaces for 
two materials (A6XXX-T4 and SPCE) are in very good agreement with the experimental data 
published by Kuwabara et al. [7, 8]. The associa ted flow rule predicts very accurately the 
distribution of the Lanckford coefficient and uniaxial yield stress, respectively. 
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