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Abstract

The correct description of initial plastic anisotropy of metallic sheets plays a key role in

modelling of sheet forming processes since prediction of material flow, residual stresses and

springback as well as wrinkling and limiting strains are significantly affected by the phe-

nomenological yield function applied in the analysis. In the last decades considerable im-

provement of anisotropic yield criteria has been achieved. Among these, the yield criterion

proposed by Paraianu et al. [An improvement of the BBC2000 yield criterion. In: Proceedings

of the ESAFORM 2003 Conference] is one of most promising plane stress yield criteria

available for orthotropic sheet materials. This work aims to improve this yield criterion with

respect to flexibility. The capabilities of the modified yield function will be demonstrated by

applications to an anisotropic aluminium alloy sheet material.
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1. Introduction

For computer simulation of sheet metal forming processes a quantitative de-

scription of plastic anisotropy is required. Nowadays, there are several possibilities

to account for plastic anisotropy which is mainly caused by crystallographic texture

and microstructure of the considered material and its evolution during the forming
process. Macroscopic plasticity theory is most frequently used due to its simplicity

and its relatively low computational effort in numerical analysis. For the case of an

isotropic metallic material, the well-known von Mises yield function is often suffi-

cient to describe yielding. This is, however, not true for anisotropic materials, es-

pecially sheet metals. In order to take into account anisotropy, von Mises’ yield

function can be modified by introducing additional parameters. These parameters

may be adjusted to a set of experimental data obtained by subjecting the considered

material to mechanical tests. Hill’s quadratic yield function (Hill, 1948; Hill, 1998) is
the most frequently used yield function of this type. The reason lies in the fact that

this yield function is very easy to handle in analytical and numerical calculations.

One of the major drawbacks of Hill’s criterion is its inability to describe the so-called

anomalous behavior often observed in aluminium alloy sheets.

Thereafter, several scientists have proposed more and more sophisticated yield

functions for anisotropic materials. Hill (1979, 1990) himself improved his criterion.

However, it was stated by Hill (1993) that none of existing formulations is able to

represent the behavior of a material exhibiting a tensile yield stress almost equal in
value along the rolling and transverse direction, while r-values vary strongly with the

angle to the rolling direction. To overcome this problem he proposed a new criterion

(Hill, 1993).

Another important research direction in the field of yield function development

was initiated by Hosford (1972), who, based on the results of polycrystal calcula-

tions, introduced a non-quadratic isotropic yield function. Hosford’s criterion was

later extended by Barlat and collaborators to anisotropic materials including shear

stresses (Barlat and Richmond, 1987; Barlat and Lian, 1989; Barlat et al., 1991).
Barlat et al. (1991) have developed a six-component yield function which is an ex-

tension of Hosford’s yield function to anisotropy. Anisotropy was introduced by

means of a linear transformation of the stress tensor. Later, this function was ex-

tended by Barlat et al. (1997a,b). Karafillis and Boyce (1993) have generalized the

idea of linear stress transformation and suggested a yield function consisting of the

sum of two convex functions. Banabic et al. (2000a,b) and Paraianu et al. (2003)

extended the plane stress yield function introduced by Barlat and Lian (1989). Barlat

et al. (2003) extended the concept of linear stress transformation and introduced two
linear stress transformations.

During the last two decades, many other yield functions have been developed in

order to improve agreement with the experimental results. For instance, Bassani

(1977) has introduced a non-quadratic yield criterion; Gotoh (1977) introduced a

fourth degree polynomial yield function; Budiansky (1984) proposed a yield function

formulated as a parametric expression in polar coordinates which was extended by

Tourki et al. (1994); Vegter et al. (1995) proposed a representation of the yield
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function using Bezier’s interpolation and mechanical tests results directly; Cazacu

and Barlat (2001) developed a yield function by introducing generalized invariants of

the classical invariants of the stress deviator. More recently, Stoughton and Yoon

(2004) used a non-associated flow rule in conjunction with Hill’s, 1948 yield function.

Bron and Besson (2004) extended the idea of Barlat et al. (2003) of using two linear

stress transformations with respect to spacial stress state. More detailed reviews of
numerous anisotropic yield criteria are given in the references (Banabic et al., 2000a;

Barlat et al., 2002; Aretz, 2003).

The present article aims at improving the flexibility of the eight-parameters

yield function introduced by Paraianu et al. (2003). Some applications to an

anisotropic aluminium alloy sheet material confirm the capabilities of the new

criterion.
2. Improvement of the BBC2002 yield criterion

2.1. BBC2002 yield criterion

In order to separate the elastic from the plastic state of deformation in a metallic

workpiece subjected to forming, a yield function of the form
F ðr; �gÞ ¼ �rðrÞ � Yrefð�gÞ6 0 ð1Þ

is commonly utilized in the phenomenological theory of plasticity. F denotes the

yield function which depends on the Cauchy stress and the accumulated equivalent

plastic strain �g given by
�g ¼
Z

_�gdt; _�g ¼ r : dp

�r
; ð2Þ
where dp is the plastic strain rate tensor. (Only isotropic hardening is considered in

the present work, but the analysis made here may be easily extended to kinematic

hardening.) �r denotes the equivalent stress. Yref is the instantaneous reference yield

stress of the material. Any testing procedure (tensile, torsion, compression) may be
used to obtain the flow curve Yrefð�gÞ. In order to account for plastic anisotropy, extra

anisotropy parameters ci, i ¼ 1; 2; 3; . . ., may be introduced and the anisotropic yield

function may be written in the following generalized form:
F ðci; r; �gÞ ¼ �rðci; rÞ � Yrefð�gÞ6 0 ð3Þ

with
r ¼
r11 r12 0

r21 r22 0

0 0 0

0
@

1
A: ð4Þ
Based on the work of Barlat and Lian (1989) the BBC2002 yield criterion

(Paraianu et al., 2003) was developed and is briefly presented here for the reader’s
convenience:
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F ða;M ;N ; P ;Q;R; S; T ; k; r; �gÞ ¼ �rða;M ;N ; P ;Q;R; S; T ; k; rÞ � Yrefð�gÞ ¼ 0:

ð5Þ

Herein, a;M ;N ; P ;Q;R; S; T ; k are anisotropy parameters as will be shown below.

The equivalent stress �r is defined as
�rða;M ;N ;P ;Q;R;S;T ;k;rÞ ¼ a � ðC
h

þWÞ2k þ a � ðC�WÞ2k þð1�aÞ � ð2KÞ2k
i1=2k

:

ð6Þ

k is an integer exponent. For bcc materials, the choice k ¼ 3 yields satisfactory

agreement of the yield locus shape with a yield locus calculated by means of a

polycrystal Taylor model. For fcc materials, the same is true for k ¼ 4. The terms C,
W and K are given as follows:
C ¼ Mr11 þ Nr22;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPr11 � Qr22Þ2 þ R2r12r21

q
;

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPr11 � Sr22Þ2 þ T 2r12r21

q
:

ð7Þ
Note that these equations are related to the principal stresses of a plane stress

state. The anisotropy parameters serve as stress weighting parameters. The yield

function is convex for k 2 NP 1 and 06 a6 1. von Mises’ yield criterion for isotropic

materials is included as a special case.
The BBC2002 yield criterion behaves excellently in fitting of experimental data if a

Newton solver is utilized to compute the anisotropy parameters for a given exponent

k (see below). An alternative procedure to calculate the anisotropy parameters is to

formulate an error function and to minimize this error (Banabic et al., 2000b). It

may, however, be observed that the BBC2002 criterion behaves ‘too stiffly’ if it is

calibrated by means of this method. An example is given in the appendix of the

present paper. Thus, one may speculate that flexibility of the function is not always

ensured and that it may fail in reproducing given experimental data. For this reason,
an improved form of the BBC2002 criterion is proposed in the subsequent section.
2.2. Formulation of a new yield criterion

In order to overcome the shortcomings of the BBC2002 criterion explained above,

the following modification of the BBC2002 yield criterion is proposed:
F ða;M ;N ; P ;Q;R; S; T ; k; r; �gÞ ¼ �rða;M ;N ; P ;Q;R; S; T ; k; rÞ � Yrefð�gÞ ¼ 0

ð8Þ

with
�rða;M ;N ;P ;Q;R;S;T ;k;rÞ ¼ a � ðC
h

þWÞ2k þ a � ðC�WÞ2k þð1�aÞ � ð2KÞ2k
i1=2k

:

ð9Þ
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The terms C, W and K are defined as follows:
C ¼ r11 þMr22

2
;

W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNr11 � Pr22Þ2

4
þ Q2r12r21

s
;

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRr11 � Sr22Þ2

4
þ T 2r12r21

s
:

ð10Þ
The yield function is convex for k 2 INP 1 and 06 a6 1. Due to the re-arranging
of the parameters M ;N ; P ;Q;R; S; T the yield function shows improved flexibility in

the error minimization calibration method. Thus, the new formulation offers more

mathematical possibilities for adjusting the anisotropy parameters to experimental

data. In the following this modified yield criterion will be referred to as ‘BBC2003’.

An example for the improved flexibility of BBC2003 compared to BBC2002 is given

in the appendix of the present article. The associated flow rule in terms of the

BBC2003 yield function is also presented in the appendix of the present article.

It should be mentioned that a further increase in flexibility could easily be in-
troduced in the new formulation if the C-term is written as
C ¼ Lr11 þMr22

2
ð11Þ
using an additional anisotropy parameter L. This increases the number of adjustable
parameters from 8 to 9 (without counting the exponent k which is associated with the

crystal structure and thus does not represent a variable in this context).

It should be mentioned that the yield function defined by Eqs. (8) and (9) can also

be deduced from the recently published yield function ‘Yld2000-2D’ proposed by

Barlat et al. (2003). Therefore, both yield functions, BBC2003 and Yld2000-2D, are

not fundamentally different. Only their form differs slightly.
2.3. Required material data for sheet metal forming analysis

The minimum experimental data which should enter the yield function as input

data includes:

• Three directional yield stresses obtained from uniaxial tensile tests along a direc-

tion at 0�, 45� and 90� to the rolling direction of the sheet. The associated yield

stresses are denoted here as Y0, Y45, Y90.
• Three r-values corresponding to 0�, 45�, 90� orientations (denoted here as r0, r45,

r90).
• The equibiaxial yield stress obtained by cross tensile test or bulge test (denoted

here as Yb).
• The equibiaxial r-value (ratio of plastic strain in transverse direction to plastic

strain in rolling direction), denoted as rb.
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This makes a total of 8 experimental data points which should be used for the

calibration of the yield function. BBC2002 as well as the yield function proposed in

this paper (see Eqs. (9) and (10)) exhibits 8 coefficients which may be determined

using the 8 experimental data points.

2.4. Determination of the anisotropy parameters

Eqs. (9) and (10) contain 8 coefficients (M ;N ; P ;Q;R; S; T ; a) while the exponent k
is associated with the crystal structure of the sheet material and thus does not rep-

resent a variable in the following context. For the adjustment of the anisotropy

parameters the following experimental data are considered to be given: Y0, Y45, Y90,
Yb, r0, r45, r90, rb. From the tensor transformation rules the stress components in a

tensile test specimen with orientation angle u with respect to the original rolling

direction are given as
r11 ¼ Yu � cos2 u;
r22 ¼ Yu � sin2 u;

r12 ¼ r21 ¼ Yu � cosu � sinu:
ð12Þ
Yu is the yield stress of the tensile test specimen under uniaxial load. This gives

three stress tensors r0, r45 and r90, respectively, associated with the orientation angle

u 2 f0�; 45�; 90�g.
For the equibiaxial tensile test (or, alternatively, the bulge test) the stress tensor

components are given by r11 ¼ r22 ¼ Yb, r12 ¼ 0. This results in a stress tensor de-

noted as rb.

A directional r-value associated with the orientation angle u can be calculated
from
ru ¼ �
sin2 u � oF

or11
� sin 2u � oF

or12
þ cos2 u � oF

or22
oF
or11

þ oF
or22

�����
ru

ð13Þ
with u 2 f0�; 45�; 90�g. The biaxial r-value, rb, follows from
rb ¼
oF
or22
oF
or11

�����
rb

: ð14Þ
As a result, one obtains the following set of 8 equations:
�rðr0; a;M ;N ; P ;Q;R; S; T Þ � Yref ¼ 0
�rðr45; a;M ;N ; P ;Q;R; S; T Þ � Yref ¼ 0
�rðr90; a;M ;N ; P ;Q;R; S; T Þ � Yref ¼ 0
�rðrb; a;M ;N ; P ;Q;R; S; T Þ � Yref ¼ 0
r0ðr0; a;M ;N ; P ;Q;R; S; T Þ � rexp0 ¼ 0

r45ðr45; a;M ;N ; P ;Q;R; S; T Þ � rexp45 ¼ 0

r90ðr90; a;M ;N ; P ;Q;R; S; T Þ � rexp90 ¼ 0

rbðrb; a;M ;N ; P ;Q;R; S; T Þ � rexpb ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð15Þ
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rexpð�Þ denote the experimentally determined r-values while rð�Þ are calculated according

to the formulas given above. This equation system is non-linear with respect to the 8

unknown anisotropy parameters a;M ;N ; P ;Q;R; S; T and may be solved by means of

a Newton solver. As an alternative way to calculate the anisotropy parameters one

may define an error function E by means of the Gaussian square of error (Aretz,

2003)
Eða;M ;N ; P ;Q;R; S; T Þ ¼ �rb � Yref
Yref

 !2

þ
X3
i¼1

�rui
� Yref
Yref

 !2

þ rb � rexpb

rexpb

� �2

þ
X3
i¼1

rui
� rexpui

rexpui

� �2

¼ Min: ð16Þ
with fu1;u2;u3g ¼ f0�; 45�; 90�g and to minimize this error function. Abbreviations

such as
�rb � �rðrb; a;M ;N ; P ;Q;R; S; T Þ
have been utilized. There are different mathematical methods available to minimize

such a function (Alt, 2002). One of the most convenient methods is the known

method of steepest descent which is preferred here.

In the authors’ opinion the error minimization procedure described above is an

excellent engineering method to check a yield function’s flexibility: only if it is

possible to fit an anisotropic yield function using the error minimization procedure

with sufficient quality to given experimental data the yield function is considered to

be flexible enough for general purpose. BBC2000 (Banabic et al., 2000b) and
BBC2002 (Paraianu et al., 2003) do not pass this flexibility test, although they can be

fitted excellently to experimental data by means of a Newton solver. In contrast, the

new proposal given in Eqs. (9)–(11) does pass this test and offers therefore a higher

flexibility than the other ‘BBC’ approaches.
3. Applications

3.1. Experimental results

By varying the longitudinal and transverse force acting on a cruciform tensile

specimen, any point of the yield locus in the range of biaxial tensile stress can be

realized. Kreißig (1981) described a cross tensile specimen which was optimized by

M€uller (1996), see Fig. 1.

In order to determine the yield locus of a sheet material in the initial state without

pre-straining, the nominal cross section can be used with good accuracy. The ex-
perimental yield locus presented in the present work has been determined in this way.

The typical characterization of the yield locus is made using five experimental points



Fig. 1. Cruciform specimen for the biaxial tensile test (M€uller, 1996). All dimensions are in millimeters.
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under seven different ratios of the applied stresses: 1:0; 4:1; 2:1; 1:1; 1:2; 1:4; 0:1. Y0,
Y90 and Yb are used for the adjustment of the yield function. The remaining points

will be used to check the difference between experimental measurements and the yield

function’s prediction. All these points are located in the first quadrant of the yield

locus (biaxial tension).

The biaxial tensile tests were carried out by means of a CNC biaxial tensile test
device designed and built at the Institute of Metal Forming Technology, Stuttgart

University, see Fig. 2.

The beginning of plastic yielding was monitored by temperature measurements

according to the method of Sallat (1988). The temperature of the specimen was

measured by an infrared thermo-couple positioned at an optimized distance from the

specimen. During elastic straining, the specimen’s temperature decreases by a frac-

tion of a degree due to thermo-elastic cooling. When plastic flow begins, the tem-

perature rises fast (Fig. 3).
In contrast to the standard definition of the yielding point the minimum of the

temperature vs. elongation enables a definition without any arbitrariness. In general,

this method overestimates the value of the yield stress compared to the classical one

by using stress gauges.

The predictions of the BBC2003 yield criterion have been tested for an AA6181-

T4 aluminum alloy sheet metal. Table 1 contains the most important mechanical

parameters of the material under consideration. The initial thickness of the sheet was

1.13 mm. The measured yield stresses for various biaxial stress states are displayed in
Table 2.



Fig. 2. Cruciform specimen and the temperature measurement device.

Fig. 3. Temperature vs. elongation obtained for standard tensile test specimen (M€uller, 1996).
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3.2. Comparison between theory and experiments

In the following the predictive capabilities of the BBC2003 yield criterion are

demonstrated for the above mentioned AA6181-T4 aluminum sheet alloy. The error

minimization identification and the Newton solver identification procedure are



Table 1

Selected mechanical parameters of the aluminum alloy AA6181-T4

Y0 Y45 Y90 Yb r0 r45 r90 rb
[MPa] [MPa] [MPa] [MPa] [–] [–] [–] [–]

142 138 137 134 0.672 0.606 0.821 0.820

Table 2

Measured yield stresses for various biaxial stress states of the aluminium alloy AA6181-T4

r11 r22 r11 r22

[MPa] [MPa] [MPa] [MPa]

142 0 144.3 102.6

140 0 146.1 104.3

140.9 0 146.1 102.6

36.5 148.9 139.1 34.8

40 148.7 139.1 41.7

36.5 140.4 140.9 38.3

97.6 147.7 0 135

99.3 149.7 0 137

101.7 152.7 0 139

126.3 145.6

125.9 139.1

126.2 139.8

Table 3

BBC2003 anisotropy parameters for the aluminum alloy AA6181-T4 calculated by means of the error

function

a M N P Q R S T Yref k
[–] [–] [–] [–] [–] [–] [–] [–] [MPa] [–]

0.45985 1.12002 1.03533 0.986456 1.07315 0.95934 1.02048 0.98339 142 4

Table 4

BBC2003 anisotropy parameters for the aluminum alloy AA6181-T4 calculated by means of a Newton

solver

a M N P Q R S T Yref k
[–] [–] [–] [–] [–] [–] [–] [–] [MPa] [–]

0.54340 1.09399 1.01843 0.97275 1.04557 0.98820 1.04013 1.00480 142 4
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compared to each other by using the input data given in Table 1. Tables 3 and 4

show the values of the material parameters a, M , N , P , Q, R, S, T obtained by nu-

merical identification by minimization of the error function and by means of a



D. Banabic et al. / International Journal of Plasticity 21 (2005) 493–512 503
Newton solver (Press, 1992), respectively. The corresponding values of k and Yref are
also presented for completeness.

Figs. 4 and 5 show the predicted directional r-values and the uniaxial yield

stresses, respectively, in comparison to experimental data. It may be seen that the

Newton solver solution meets the experimental input data points exactly, while the

calibration by means of the error minimization shows small discrepancies. According
to the yield stresses the error minimization leads only to an (acceptable) deviation of

the yield stress at 0� to the rolling direction while the remaining points are met ex-

actly. As a consequence, the yield loci predicted by both identification methods are

quite close to each other and agree with the experimental data very well (see Fig. 6).

The same good agreement may be seen in the p-plane predictions shown in Fig. 7.

The error minimization fitting resulted in the following predictions for the equibi-

axial data: Yb ¼ 135:12 MPa, rb ¼ 0:825. On the other hand, the Newton solver

fitting gave Yb ¼ 134:00 MPa, rb ¼ 0:820.
In general one may see that the Newton solver is better suited for parameters

identification than the error minimization method. Nevertheless, the latter method is

a very suitable engineering way to test a yield function’s flexibility. With respect to

this point, the new yield function BBC2003 passed this flexibility test. Perfect

agreement with the experimental input data is, however, only achieved by utilizing a

Newton solver identification.
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4. Conclusions

A new yield criterion deduced from the one introduced by Paraianu et al. (2003)

has been proposed. In comparison to the original proposed yield function the new

one has an increased flexibility. The minimization of an error function as well as a

Newton solver have been used for the numerical identification of the anisotropy

coefficients for an AA6181-T4 aluminum alloy sheet. The first identification method

(error function) lead to small discrepancies in prediction of directional yield stresses
and r-values. By utilizing the second method for the parameters identification

(Newton solver) all experimental input data points were met exactly by the new yield

function. In both cases, the yield locus was in very good agreement. The capabilities

and the simplicity of the proposed yield function make it very attractive for an

implementation in finite element codes.
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Appendix A

A.1. Application of BBC2002 and BBC2003 to Al2090-T3

In the following the new yield function proposal BBC2003 will be compared with

the BBC2002 criterion and the superior flexibility of BBC2003 will be demonstrated.

For this purpose the material Al2090-T3 (Barlat et al., 2003) has been considered

because it shows a very strong anisotropy and is frequently used as a testing material.

The corresponding material data is given in Table 5.

In order to calibrate the yield functions BBC2002 and BBC2003 the following
data has been selected as input data: Y0=Y0, Y45=Y0, Y90=Y0, Yb=Y0, r0, r45, r90, rb. (It
should be mentioned that it does not matter if normalized yield stresses are utilized

as input data.)

Figs. 8–11 display the results obtained by calibrating BBC2002 and BBC2003,

respectively, by means of the error minimization method. The same code and the

same numerical parameters have been utilized to calibrate the two yield functions.

Additionally, the results obtained by fitting BBC2003 by means of a Newton solver

are also shown in these figures. It may clearly be seen that the BBC2003 approach is
significantly superior to BBC2002 especially with respect to the prediction of the

equibiaxial yield stress as shown in Fig. 10. The results obtained by the Newton

solver meet all experimental input data exactly and may be considered as a reference

in the shown figures.

It should be mentioned that the superiority of the BBC2003 criterion compared to

the BBC2002 approach has also been found for some other materials, but these

results are not presented here.

A.2. Associated flow rule in terms of the BBC2003 yield function

In the phenomenological theory of plasticity the associated flow rule
Table 5

Mechanical parameters of the aluminum alloy Al2090-T3

Y0=Y0 Y15=Y0 Y30=Y0 Y45=Y0 Y60=Y0 Y75=Y0 Y90=Y0 Yb=Y0 Yref=Y0
[–] [–] [–] [–] [–] [–] [–] [–] [–]

1.000 0.961 0.910 0.811 0.811 0.882 0.910 1.035 1.000

r0 r15 r30 r45 r60 r75 r90 rb k
[–] [–] [–] [–] [–] [–] [–] [–] [–]

0.210 0.327 0.692 1.580 1.039 0.538 0.690 0.670 4

The yield stresses are normalized with respect to Y0.
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dp ¼ _k
oF
or

ðA:1Þ
gives the evolution of the plastic deformation. For the plane stress yield function

BBC2003 given by Eqs. (9) and (10), only four non-zero gradient components can be

calculated. They are given by
oF
or11

¼ oF
oC

oC
or11

þ oF
oW

oW
or11

þ oF
oK

oK
or11

oF
or22

¼ oF
oC

oC
or22

þ oF
oW

oW
or22

þ oF
oK

oK
or22

oF
or12

¼ oF
oC

oC
or12

þ oF
oW

oW
or12

þ oF
oK

oK
or12

oF
or21

¼ oF
oC

oC
or21

þ oF
oW

oW
or21

þ oF
oK

oK
or21

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðA:2Þ
This equation contains some common partial derivatives and some specific ones.

The common ones are given as follows:
oF
oC

¼ A � a � ðC
n

þWÞ2k�1 þ a � ðC�WÞ2k�1
o
; ðA:3Þ

oF
oW

¼ A � a � ðC
n

þWÞ2k�1 � a � ðC�WÞ2k�1
o
; ðA:4Þ

oF
oK

¼ A � 2 � ð1
n

� aÞ � ð2KÞ2k�1
o
; ðA:5Þ
with
A � a � ðC
h

þWÞ2k þ a � ðC�WÞ2k þ ð1� aÞ � ð2KÞ2k
ið1=2kÞ�1

ðA:6Þ

The remaining specific partial derivatives are:
oC
or11

¼ 1

2
;

oC
or22

¼ M
2
;

oC
or12

¼ 0; ðA:7Þ

oW
or11

¼
1
4
� ðNr11 � Pr22Þ � Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
� ðNr11 � Pr22Þ2 þ Q2r12r21

q ; ðA:8Þ

oW
or22

¼
1
4
� ðNr11 � Pr22Þ � ð�PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
� ðNr11 � Pr22Þ2 þ Q2r12r21

q ; ðA:9Þ

oW
or12

¼ Q2 � r21

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� ðNr11 � Pr22Þ2 þ Q2r12r21

q ; ðA:10Þ

oW
or21

¼ Q2 � r12

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� ðNr11 � Pr22Þ2 þ Q2r12r21

q ; ðA:11Þ
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oK
or11

¼
1
4
� ðRr11 � Sr22Þ � Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
� ðRr11 � Sr22Þ2 þ T 2r12r21

q ; ðA:12Þ

oK
or22

¼
1
4
� ðRr11 � Sr22Þ � ð�SÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
4
� ðRr11 � Sr22Þ2 þ T 2r12r21

q ; ðA:13Þ

oK
or12

¼ T 2 � r21

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� ðRr11 � Sr22Þ2 þ T 2r12r21

q ; ðA:14Þ

oK
or21

¼ T 2 � r12

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
� ðRr11 � Sr22Þ2 þ T 2r12r21

q : ðA:15Þ
Alternatively, one may calculate the yield function gradient more conveniently by

means of the forward difference scheme (Aretz, 2003) as follows:
oF
or11

� F ðr11 þ Dr; r22; r12; r21Þ � F ðr11; r22; r12; r21Þ
Dr

; ðA:16Þ

oF
or22

� F ðr11;r22 þ Dr; r12; r21Þ � F ðr11; r22; r12; r21Þ
Dr

; ðA:17Þ

oF
or12

� F ðr11;r22; r12 þ Dr; r21Þ � F ðr11; r22; r12; r21Þ
Dr

; ðA:18Þ

oF
or21

� F ðr11;r22; r12; r21 þ DrÞ � F ðr11; r22; r12; r21Þ
Dr

: ðA:19Þ
A central difference scheme, which is computationally more expensive, has also
been formulated (Aretz, 2003) but there is no practical difference in the accuracy. Dr
is of the order 1� 10�5. If necessary one should symmetrize the gradient calculated in

this numerical fashion since
oF
or12

¼ oF
or21

ðA:20Þ
must hold.
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