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a b s t r a c t

Constitutive models for dominant mechanisms in hot forming are proposed. These models consider
inter-granular deformation, grain boundary sliding, grain boundary diffusion and grain growth. New
stress–strain rate relationships are proposed to predict deformation due to grain boundary sliding and
grain boundary diffusion. Besides a Taylor type polycrystalline constitutive model, a visco-plastic relation
in conjunction with two different yield functions is used to predict inter-granular deformation. Step
strain rate tests and bulge forming test are simulated with the proposed models. Results are compared
with experimental data to verify the constitutive models. It is concluded that the visco-plastic models
can predict material behavior in hot deformations as accurately as the polycrystalline model but with
much less computational costs. To examine the hardening effects, the model is calibrated with tensile
test data of AA5083 at 550 1C, where hardening is remarkable. Then, as an example, it is used to simulate
a tray forming experiment. Dome heights and tray thicknesses at various positions during forming
process are very close to experimental observations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sheet metal components with complex shapes can be made at
elevated temperatures by superplastic forming (SPF) and quick
plastic forming (QPF). Finite element simulation has reduced the
number of trial forming experiments in these processes. The
accuracy of a constitutive model is currently the most significant
issue to achieve useful predictions in FE simulations of these
processes.

The microstructure of a hot formed metal differs strikingly
from that of a part formed at room temperature. The difference is
more evident in superplastic forming, and the deformation
mechanisms differ substantially from cold forming [1]. Several
mechanisms may play some roles in hot forming including
dislocation movement inside grains, grain boundary sliding, grain
boundary diffusion, and grain boundary migration. Various micro-
structural constitutive models were proposed for better under-
standing of these mechanisms and/or exact prediction of material
behavior [1–5]. Contributions of grain boundary sliding and grain
boundary diffusion in total deformation have been considered by
many researchers [1,3,6–10].

Some researchers investigated grain growth during hot defor-
mation [11–16] and a few models were also proposed to predict
grain growth [14,15,17–19]. These models have been numerously
used in simulations of superplastic forming [20–23].

The previous works on hot forming constitutive equations can
be generally classified into two groups:

a. Macro-constitutive equations that can be used at every material
point to predict material macro-behavior in complex processes
[23,24]. Norton Half behavior is an example of these constitutive
models [25]. These types of constitutive models that include
material dependency of strain rate and grain size are applicable
for limited conditions of forming. For example some of these
relations can explain material constitutive behavior when loga-
rithmic scale of stress and strain rate diagram is a straight line.
Some other relations can only be used for certain grain sizes that
material shows superplastic behavior.

b. Micro-constitutive models that consider micro-structure of
material for better understanding of deformation mechanisms
[2–5]. This group can predict material behavior in various
microstructures and strain rates after calibration with fewer
experiments. However these micro-constitutive models cannot
directly be used in simulation of complicated processes due to
high computational costs and usually a multi-scale modeling is
required for this purpose [26].
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The aim of the current work is to propose micro-constitutive
models that can be calibrated with a few experiments, the same as
group (b) but can be directly used to predict material behavior in
macro-scale simulation of complicated processes, the same as
group (a). These models are expected to properly predict material
behavior for a vast range of grain sizes, strain rates and strains
similar to group (b) but with much less computational costs.

To prepare the models in this paper, material deformation is
divided into two sections: inter-granular and grain boundary mechan-
isms. Grain boundary mechanisms include: grain boundary sliding
(GBS), grain boundary diffusion (GBD) and grain growth. New micro-
constitutive relationships are proposed for GBS and GBD that correlate
macro-stresses to strain rates. These relationships have been pre-
viously verified for various strain rates, grain sizes and stress states
[27] but grain growth and consequent hardening were not considered
in these relationships. In the other words in this model dependency of
material on strain is ignored. To add this missing part to these
relationships a grain growth model that was proposed by Kim et al.
[17] is also used beside these relationships to consider grain size
evolution under deformation.

Besides the above mentioned boundary mechanisms, inter-gra-
nular deformation is also predicted by three different approaches I:
the Taylor type polycrystalline approach, II: Von-Mises viscoplastic
model and III: J2-J3 viscoplastic model.

It should be mentioned that initial texture or texture development
during deformation causes material anisotropic behavior in cold
forming [28–30]. The Taylor type polycrystalline approach is widely
used to predict macro-material behavior in cold forming processes
especially when material anisotropy due to material texture is a
crucial issue [31–36]. In hot forming, especially superplastic forming
in contrast with cold forming, texture will reduce as the material
undergoes deformation [1] and in this work it is supposed that mate-
rial have an isotropic behavior. The two above mentioned macro-
viscoplastic models are proposed to have the same behavior with the
Taylor type polycrystalline model without considering texture for
various strain rates and stress states, but with much less computa-
tional costs. The above mentioned models are compared with each
other in different simulations. The remainder of this paper is orga-
nized as follows: At first, assumptions and governing equations are
listed for the mechanisms and models. Then step strain rate tests and
gas pressure forming are simulated to show the ability and limitations
of the various models. Finally, one of the viscoplastic models is used in
the circumstances that grain growth has a significant role. For this
purpose, the model is calibrated with tensile test data at different
strain rates and then the model is used to simulate gas pressure tray
forming.

In summary it will be shown that the proposed boundary micro-
constitutive models in conjunction with inter-granular viscoplastic
models can be used in various hot forming conditions such as
temperatures, strain rates, strains and stress states in a very cost
effective and accurate manner.

2. Model description

In the proposed model a material point is visualized as a
representative of grains and their boundaries. So the macroscopic
deformation is a result of inter-granular deformation caused by
dislocations creep, GBS and GBD, at that point:

Lij ¼ LCRij þLGBSij þLGBDij ð1Þ

where Lij denotes the total velocity gradient tensor; LCRij is the

velocity gradient due to inter-granular deformation; LGBSij is the

velocity gradient due to GBS; LGBDij is the GBD velocity gradient.

2.1. Inter-granular deformation

At first, a standard crystal plasticity model with the Taylor type
polycrystalline approach is used to approximate the response of
material within the grains. Then a viscoplastic relation in conjunction
with two suitable yield functions is proposed to be substituted and
compared with Taylor type polycrystalline model. Here the objective is
to find a cost effective and accurate constitutive model which
represents the inter-granular material behavior.

2.1.1. Polycrystalline constitutive model
The crystal plasticity model, used in this work employs the

framework of classical crystal plasticity by Peirce and Asaro [37,38]
and Asaro [39,40]. Implementation of this model is based on the
user-material routine (UMAT) of Huang [41] in the environment of
ABAQUS finite element code. In this paper, the grains are all face-
centered cubic (FCC) crystals, with twelve (111) [110] slip systems.

The velocity gradient tensor is decomposed into elastic and
plastic parts as:

LCRij ¼ LeijþLpij ð2Þ

The symmetric and anti-symmetric parts of velocity gradient
tensor can also be decomposed into elastic and plastic parts

DCR
ij ¼De

ijþDp
ij ð3� 1Þ

WCR
ij ¼We

ijþWp
ij ð3� 2Þ

Note that De
ij is related to stress rate through the usual linear

elastic constitutive equations. Dp
ij and Wp

ij are computed by sum-
ming the shearing rates of the active slip systems

DP
ij ¼

1
2

∑
N

α ¼ 1
_γαðsαi mα

j þsαj m
α
i Þ ð4� 1Þ

WP
ij ¼

1
2

∑
N

α ¼ 1
_γαðsαi mα

j �sαj m
α
i Þ ð4� 2Þ

where sαi and mα
i denote, the components of unit vectors parallel

to the slip direction and slip plane normal respectively, and _γα is
the shear rate on slip systemα and is computed from:

_γα ¼ _γα0
τα

τ0

� �nc

ð5Þ

here, _γα0 is a characteristic slip rate; k is the stress exponent of the
slip system; and τ0 is characteristic flow strength. Hardening is
neglected in inter-granular computations and τ0 is assumed to be
constant. τα is the resolved shear stress on the slip system α.

For polycrystalline materials, a material point can be visualized as a
multitude of single crystals, and the constitutive response at this
material point is taken as a suitable average of the constitutive
response of the individual crystals comprising this representative
point. In the present work, the Taylor type model [42] is used to
calculate the crystal or inter-granular deformation. In this model the
deformation in each grain is taken to be identical to the macroscopic
deformation of the continuum. Furthermore, the macroscopic values
of all quantities, such as stresses, stress rates and elastic modules, are
obtained by averaging their respective values over grains with random
orientations at that particular material point.

2.1.2. Viscoplastic models
In this section two viscoplastic constitutive models are used

which represent the same inter-granular deformation as polycrys-
talline model with the objective of reducing computational costs.
These models are defined to predict the same behavior as poly-
crystalline materials in various strain rates and stress states.
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2.1.2.1. Strain rate. To investigate effect of strain rate in FCC
polycrystalline material, various strain rates are applied to this mate-
rial in simple tension. The simple tension is modeled in ABAQUS FEM
code as discussed in Ref. [27]. It should be emphasized that grain
boundary mechanisms are ignored here and only inter-granular
deformation is considered. For this purpose Taylor type poly-
crystalline model is implemented in ABAQUS code through a user
defined material subroutine (UMAT). The parameters that are used in
these simulations are shown in Table 1.

Fig. 1 shows flow stress–strain rate relationship. The relation is
exactly a straight line in a logarithmic scale; therefore the follow-
ing viscoplastic equation can be proposed to relate effective plastic
strain rate and equivalent stress:

se ¼ A _εpBef f ð6Þ

where A and B are material constants and are A¼124.0 and
B¼0.23 in this case. se will be calculate by yield function proposed
in next section.

2.1.2.2. Stress state. The polycrystalline behavior is also examined
in various stress states. For this purpose, the material is subjected
to 2D tension and compression tests with deferent stress ratios to
obtain polycrystalline yield locus. The applied boundary condition
in this case is explained in [27]. Fig. 2 shows the resulted yield
locus and its comparison with Tresca and Von-Mises yield loci. As
it can be seen in this figure the polycrystalline yield locus is
located between Tresca and Von-Mises yield loci and is closer to
Von-Mises criterion. Therefore Von-Mises criterion can be used to
predict FCC polycrystalline behavior in various stress states. The
following yield function is also proposed to predict polycrystalline
behavior more closely:

f ¼ J32�ϕJ23�Y6 ¼ 0 ð7Þ

where J2 and J3 are second and third invariants of deviatoric
stress tensor, Y is strain dependent yield stress and ϕ is material
constants. When ϕ is 1.5 the best agreement between
polycrystalline yield locus and the proposed J2-J3 yield locus
will be obtained.

Now polycrystalline behavior can be switched with Eq. (6) and
one of the above mentioned yield functions. Although effects of
strain rate and stress state were considered separately but the
resulted model behave similar to polycrystalline model in any
combination of strain rates and stress states. To confirm this fact,
resulting yield loci from polycrystalline and J2-J3 models are
compared for various strain rates in Fig. 3.

2.2. Grain boundary sliding

Grain boundary sliding occurs due to shear tractions acting
tangent to the grain boundary. For calculating GBS deformation in
a material point it is assumed that:

a. The boundaries are comprised of parallel planes in several
presumed directions at a material point. So a set of normal
vectors indicates the boundaries.

b. Stress tensor is identical for all boundaries and is equal to
macro-stress tensor in a material point. This assumption means
that grain boundary sliding will be calculated with the average
stress applied to the entire boundaries in a material point.

c. Relative sliding velocity between two grains has the same
direction with shear traction acting on the boundary.

Shear traction acting on all parallel boundaries with a normal
vector nβi can be calculated as follows:

τβi ¼sijn
β
j �ðsmjn

β
mn

β
j Þn

β
i ¼ sβt t

β
i ð8Þ

The superscript β indicates the number of assumed boundary
planes. Here sβt is the resolved shear stress and tβi is direction of
this shear traction. If the resolved shear stress in these boundaries
is greater than a threshold stress sth, the following viscous

Table 1
Parameters used in the simple tension simulation
of FCC polycrystalline.

Parameter Value

Young's modulus (E) 70,000 MPa
Poisson's ratio (ν) 0.3
Characteristic strain rate (_γ0) 6 s�1

Slip system strength (τ0) 65 MPa
Stress exponent of slip (nc) 4.35
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Fig. 1. Flow stress vs. strain rate for Taylor type FCC polycrystalline.
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Fig. 2. Resulting yield loci from the Taylor type polycrystalline and also Tresca and
Von-Mises yield functions.
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constitutive equation is assumed to characterize sliding. This
equation relates the relative sliding velocity of two adjacent grains
to the resolved shear stress [3,5]

vβt ¼ Ωηexpð�QGBS=kTÞ
kT

sβt �sth

sth

� �n1

if sβt 4sth

vβt ¼ 0 if sβt osth

8><
>: ð9Þ

here, η is a characteristic sliding velocity; k is the Boltzmann
constant; T is the absolute temperature; n1 is the stress exponent
of the slid; Ω is the atomic volume and QGBS is the activation
energy for GBS. Shear strain rate due to GBS in all parallel
boundary planes with a normal vector nβi can be written as:

_γβ ¼ vβt
d

ð10Þ

where, d is the average grain size. The macro-deformation due to
GBS in these parallel boundaries can be written as:

Dβ
ij ¼

1
2
_γβðnβi t

β
j þtβi n

β
j Þ ð11� 1Þ

Wβ
ij ¼

1
2
_γβðnβi t

β
j �tβi n

β
j Þ ð11� 2Þ

Considering all boundaries:

DGBS
ij ¼ 1

2
∑
Nb

β ¼ 1
_γβðnβi t

β
j þtβi n

β
j Þ ð12� 1Þ

WGBS
ij ¼ 1

2
∑
Nb

β ¼ 1
_γβðnβi t

β
j �tβi n

β
j Þ ð12� 2Þ

where Nb is the number of assumed boundary.

2.3. Grain boundary diffusion

Atoms (or equivalently, vacancies) adjacent to the grain bound-
ary are assumed to be mobile. Atoms may detach from each grain,
diffuse along the boundary, and then re-attach to one of the two
adjacent grains [3]. In this process, atoms detach from regions of

the grain boundary that are subjected to compressive stress and
migrate to regions that are under tensile stress [3,5]. Hence grain-
boundary diffusion is assumed to be a function of variation of the
normal stress acting on the boundary. Therefore it is assumed that
the flux of atoms tangent to each interface is related to the normal
stress [3,5] through:

j¼ �ΩDGBtδGBexpð�QGBt=kTÞ
2kT

∂sn

∂s
ð13Þ

where T is absolute temperature; k is Boltzmann constant;
DGBtexpð�QGBt=kTÞ is the tangential grain boundary diffusivity;
QGBt is the corresponding activation energy; δGB=2 is the thickness
of the diffusion layer in one grain. When temperature is constant,
Eq. (13) can be simplified to:

j¼ �q
∂sn

∂s
ð14Þ

where q is a constant.
Remembering that a material point was visualized as an

aggregate of grains with their boundaries, for calculating GBD
deformation it is assumed that:

a. Deformation caused by GBD in a material point can be replaced
by deformation that occurs in one grain by GBD. With this
assumption atoms only move around one grain and cannot
move from one grain to another one and grain boundary
migration is not modeled. With this assumption grain bound-
aries cannot exchange atoms at triple junctions and satisfaction
of mass conservation at triple junctions does not need to be
considered.

b. The grain has a spherical shape.
c. Stress is constant around the grain boundary and equals to

macro-stress at that material point.

With these assumptions, a grain boundary is a two-dimen-
sional space (spherical surface) and Eq. (14) is extended for a two
dimensional space:

j
!¼ �q∇

!sn ¼ �q
∂sn

∂s1
e1þ

∂sn

∂s2
e2

� �
ð15Þ

where e1 and e2 are unit base vectors on the boundary which is a
two dimensional space; s1 and s2 are lengths along e1 and e2.
Considering mass conservation, the velocity discontinuity in the
direction of the normal to the grain boundary is:

½vn� ¼ �q
∂2sn

∂s21
þ∂2sn

∂s22

 !
ð16Þ

It can be proved from the above equation that in GBD
mechanism, rate of deformation tensor and deviatoric stress
tensor relate via [27]:

DGBD
ij ¼ 1:6755K

d3
Sij ð17Þ

where K is a constant.

2.4. Grain growth model

Eqs. (10) and (17) show that grain size is effective in stress–
strain rate relationship in GBS and GBD mechanisms respectively.
Therefore in order to determine the flow stress, it is necessary to
know the current grain size. In hot deformation the grain size will
be changed by both static and deformation enhanced grain
growth. Static grain growth was observed to be small for materials
and temperatures under consideration [43]. There are several
models proposed to describe deformation enhanced grain growth.
In the current work the following model that was proposed by Kim

-50 0 50
-50

0

50

Taylor type polycrystalline, strain rate = 0.0001
Taylor type polycrystalline, strain rate = 0.001
Taylor type polycrystalline, strain rate = 0.01
J2J3 yield locus

σ1

σ2

Fig. 3. Resulting yield loci from a Taylor type polycrystalline and J2-J3 yield
function in various strain rates.
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et al. [17] is used to predict grain size evolution during hot
deformation. This model was derived considering a micro-
structural approach.

_d¼ Cd_εpef f ð18Þ

where _d, is the dynamic grain growth rate and C is an assumed
constant. According to Eqs. (10) and (17), for a given deformation
rate as the grain size increases the flow stress also increases.
Therefore when the grain growth is considered in the proposed
model, the hardening behavior in hot deformation can be predicted.

In summary, to predict material behavior in this paper, grain
growth and deformation due to grain boundary mechanisms are
computed according to the above mentioned models in all
simulations but inter-granular deformation is computed with the
following three approaches:

a. Using Taylor type polycrystalline (Model I).
b. Using Eq. (6) in conjunction with Von-Mises yield function

(Model II).
c. Using Eq. (6) in conjunction with the J2J3 yield function as is

proposed by Eq. (7) (Model III).

3. Numerical implementation

To add the proposed constitutive models to the Abaqus FEM code,
a user subroutine UMAT is used. In this subroutine following
algorithm shown in Fig. 4 is used. In this algorithm dεtij is total strain

increment; dεGBDij is strain increment due to GBD; dεGBSij is GBS strain

increment; dεCrij is strain increment due to inter-granular deformation.

∂Δs=∂ΔεCr is the Jacobean and is calculated from the Taylor model
and it can be easily shown that is equal to ∂Δs=∂Δεt which is the
total Jacobean. θ is a character that shows GBS and GBD are calculated
from the stress at the beginning or the end of the increment. For
example, if θ¼ 0, GBS and GBD are calculated from the stress value at
the beginning of the increment and if θ¼ 1, the stress value at the end
of the increment will be used. In this work θ¼ 0:5 has been used.

4. Applications and results

In this section, the proposed models are used in various strain
rates and stress states to investigate the capability and limitations
of these models. Then Model II is used in a situation that grain
growth and hardening are also effective and predictions are
compared with tray forming experiments.

4.1. Simulation of step strain-rate tensile tests

Step strain-rate tensile tests use a series of strain rates imposed
upon a single specimen, to obtain data for flow stress as a function
of temperature, grain size and strain rate. Further details of the
step strain-rate testing procedure are described in Ref. [2,26].
The flow stress vs. strain rate data on AA5083 for six different
microstructures, derived from the step strain-rate testing proce-
dure due to Krajewski et al. [26] will be used for comparison with
the predicted results in this paper.

Step strain-rate tensile test is simulated in ABAQUS FEM code
with a cubic specimen with a length of a and boundary conditions
that are described in Ref. [27]. The proposed models are imple-
mented in this code through user-material routines (UMAT).

The constitutive parameters used in these simulations were
calibrated with the grain sizes of 7 μm and 81.7 μm. The procedure
of finding the best set of constitutive parameters for Model I is
reported in Ref. [27]. For models II and III the procedure is much

simpler. For these models a one dimensional code is written in
MATLAB software by using Eqs. (6), (8)–(12) and (17). Then the best
set of parameters obtained with this code with minimizing error
between predicted stress and stress from experiments. In fact one of
the advantages of models II and III is that finding their parameters is
much simpler. Tables 2 and 3 show calculated parameters.

For this material strain hardening, which is typically associated
with grain growth during hot forming, was observed to be small
over the temperature, strains and strain rates under consideration
[44]. Therefore the grain growth coefficient was set to be zero in
these cases. The calibrated material properties were then used to
predict the behavior of specimens with other grain sizes. Predic-
tions of the three proposed models are identical as are compared
with Krajewski et al. [26] results, in Fig. 5. It can be seen from this
figure that the proposed models predict material behavior for
various grain sizes and strain rates close to experimental data. It is
worth mentioning that the three proposed models can compute
contribution of each deformation mechanisms in total deforma-
tion as it is shown in [27].

Fig. 4. Numerical algorithm used to implement constitutive equations in Abaqus
software.
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4.2. Gas pressure forming simulation

The material models are implemented in FEM simulations of
gas-pressure bulge-forming to compare the models in situations
where multidirectional stress exists. In gas-pressure bulge-form-
ing process, the sheet is clamped between two dies and it is
formed by gas pressure at a hot temperature. Details of this
procedure are reported in Refs. [26,45].

In current simulations initial sheet thickness is 1.04 mm and
the gas pressure is 0.25 Mpa. The considered material is AA5083 at
450 1C and hence the calibrated parameters in Tables 2 and 3 are
used again.

ABAQUS STANDARD is used to simulate gas-pressure bulge-
forming. The material models are applied through user subroutines.
The process is considered to be axisymmetric. A mesh sensitivity
study is conducted to assure that element size is sufficiently fine to
provide repeatable predictions of bulge displacements and strain
rates. Fig. 6 shows initial mesh of the blank, with 160 quadrilateral
CAX4 elements. The implicit formulation in Abacus requires calcula-
tion of an initial elastic response; hence a linear ramp type pressure
is applied within one second and is then kept constant until 1800 s.
Plastic deformation was subsequently calculated for the duration of
the simulations. It should be emphasized that all simulations have
the same circumstances except the inter-granular constitutive models.
Fig. 7 shows the deformed sheet predicted by the model II.

Fig. 8 compares predicted dome heights during forming time for
the three proposed inter-granular models. Results of model I was
previously compared with experimental data and good agreements
obtained [27]. As it can be seen in this figure, prediction of model III
is very close to model I but model II predicts dome height a little less
than the other two. By comparing the inter-granular yield loci for the
three models that are shown in Fig. 2, this difference is reasonable. In
gas pressure forming, stress state locates between plane strain and
biaxial tension. Von-Mises criterion predicts higher flow stresses
than the others in this zone so the predicted displacements by this
model are expected to be less.

A remarkable difference between the three proposed models is
the computational costs that causes model II and III to be more
attractive than model I. For the same circumstances used in
different simulations, model II and III were performed about fifty
times faster than model I.

4.3. Simulation of superplastic tray forming

In this section, model II is examined in a situation that grain
growth has a significant effect. In hot forming processes besides
initial grain size and strain rate, flow stress is also usually affected
by grain size evolution and growth. In the previous sections it was
shown that the model can well predict material behavior for various
grain sizes and strain rates. If the model can also properly predict

Table 2
Calibrated parameters used in the present simulations for model I.

Parameter Value

Young's modulus (E) 70,000 Mpa
Poisson's ratio (ν) 0.3
Shear modulus (μ) 26,900 Mpa
Characteristic strain rate (_γ0) 6 s�1

Slip system strength (τ0) 65 Mpa
Stress exponent of slip (nc) 4.35
Stress exponent of boundary slid (n) 3.6
Grain boundary sliding pre-exponential (η) 1.5e-9 mm s�1

Grain growth coefficient (C) 0
Grain boundary diffusion coefficient (K) 1.34 e–11 J
Threshold stress of boundary slid (sth) 0.2 MPa

Table 3
Calibrated parameters used in the present simulations for models II & III.

Parameter Value

Young's modulus (E) 70,000 Mpa
Poisson's ratio (ν) 0.3
Shear modulus (μ) 26,900 Mpa
Strain coefficient of inter-granular deformation (A) 124.0
Stress exponent of inter-granular deformation (B) 0.23
Stress exponent of boundary slid (n) 3.6
Grain boundary sliding pre-exponential (η) 1.5e-9 mms�1

Grain growth coefficient (C) 0
Grain boundary diffusion coefficient (K) 1.34 e-11 J
Threshold stress of boundary slid (sth) 0.2 MPa
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Predictions of three models for d=81.7μm
Predictions of three models for d=37.2μm
Predictions of three models for d=22.3μm
Predictions of three models for d=11.2μm
Predictions of three models for d=9.2μm
Predictions of three models for d=7μm
Data from Krajewski et al [26]

Fig. 5. Comparison of current predictions with Krajewski et al. results [26].

Fig. 6. Initial mesh of the blank, with 160 quadrilateral CAX4 elements.

Fig. 7. Final deformed sheet predicted by model II after 1800 s. and applying
a constant pressure of 0.25 MPa.
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effects of hardening due to grain growth, obviously it can be used in
most hot forming simulations. At first the model is calibrated by
tensile tests with different strain rates and then it is used to simulate
superplastic gas pressure tray forming.

Fig. 9 shows the stress–strain relations under various strain rates
for AA5083 at a constant test temperature of 550 1C [20]. Further
details about composition of this material and its experimental
stress–strain results have been reported by Khaleel et al. [20].

As it can be seen in Fig. 9, hardening is remarkable in this case.
These curves were used to calibrate the model and calibrated
parameters are shown in Table 4. These parameters were obtained
from the initial yield points for four strain rates and slope of one of
the curves. As it can be seen from Fig. 9, the calibrated model closely
fits the experimental data for various strain rates and strains. These
results, shows the ability of model to predict hardening behavior for
different strain rates.

In gas pressure tray forming, a sheet is clamped on a die with
a rectangular cavity of 50.8 mm width, 203 mm length, and
25.4 mm depth. Fig. 10 shows one-quarter of the die surface and
the sheet. A flat flange is surrounding the cavity with 38 mm
width. A die entrance radius of 3.2 mm makes the transition from
the flange to the rectangular cavity.

ABAQUS EXPLICIT finite element code is used for these simula-
tions. The sheet is meshed with 1463 quadrilateral M3D4R
elements and the die has 3713 R3D4 elements. The gas pressure
history used in Khaleel et al. [20] experiments, is shown in Fig. 11.
In the current simulation, this pressure history is applied on the
sheet by a user amplitude routine (VUAMP). The constitutive
model is also implemented through a user defined material
routine (VUMAT). Effect of friction coefficient on the accuracy of
results is discussed by Khaleel et al. [20] and in this work the
suggested friction coefficient by them is used.

In this process, the center of the sheet moves towards the bottom
of the die. After a while this point contacts the die and remains fixed.
Then deformation at the corners increases. Fig. 12 shows the
predicted and measured depth of the center vs. time. As it can be
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Fig. 8. Predictions of dome heights vs. time for the three models.

Fig. 9. Stress–strain curves on AA5083 at a constant test temperature of 550 1C.

Table 4
Parameters of model II, calibrated by tensile test curves with different stain rates.

Parameter Value

Young's modulus (E) 67,400 Mpa
Poisson's ratio (ν) 0.3
Initial grain size d 8.6 μm
Strain coefficient of inter-granular deformation (A) 90.0
Stress exponent of inter-granular deformation (B) 0.303
Stress exponent of boundary slide (n) 1.3
Grain boundary sliding pre-exponential (η) 1.4e-5 mms�1
Grain growth coefficient (C) 2.75
Grain boundary diffusion coefficient (K) 5.0 e-11 J
Threshold stress of boundary slide (sth) 0.45 MPa

Fig. 10. One-quarter of the die and the sheet in ABAQUS EXPLICIT FEM environment.
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Fig. 11. Gas pressure history that was used in experiments.
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seen from this figure, the predictions are in good agreement with
experiments. The sheet center contact with the die after about 360 s.
Fig. 13 shows the deformed sheet at that time and Fig. 14 compares
the computed and predicted sheet thicknesses along its width at the
contact time. In this figure predicted thicknesses from simulation
without considering grain growth, is also added. In simulation
without considering grain growth, grain growth coefficient, C set
to be zero and other circumstances are the same as other simula-
tions. As it can be seen in this figure if grain growth be ignored
material flow stress reduces and predicted deformation is larger.

It can be seen from Fig. 14 that the predicted thicknesses are in
good agreement with measured thicknesses, especially at the central
zone where the friction coefficient does not affect sheet thickness.
In the other word in this zone the most effective parameter on
prediction accuracy is constitutive equation. Fig. 15 shows the tray
after 840 s. At this instance, the corners of tray are also formed.

Figs. 16 and 17 compare the predicted andmeasured tray thicknesses
at that time in width and length directions respectively. In Fig. 16
predicted thicknesses from simulation without considering grain
growth is also reported. Comparing Figs. 14 and 16, effect of
considering grain growth is more obvious when the workpiece does
not touch bottom of the die. Since at the end of the process
workpiece shape is similar to the die, changing material flow stress
due to grain growth does not affects final shape of the workpiece the
same as the middle of the process.

These two figures also reveal that predictions by the model are
in close agreement with experimental measurements. These
results, obtained in this section prove that the model can well be
used for various strain rates; stress states and when hardening due
to grain size evolution exists.

Contribution of each deformation mechanism is distinguish-
able in all of the above simulations. The interested reader can refer
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Fig. 12. Depth of the sheet center during forming vs. time.

Fig. 13. Deformed sheet after 360 s.
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Fig. 14. Predicted and measured sheet thicknesses in width direction after 360 s.

Fig. 15. Deformed sheet after 840 s.
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Fig. 16. Predicted and measured sheet thicknesses in width direction, after 840 s.
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Fig. 17. Predicted and measured sheet thicknesses in length direction, after 840 s.
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to Ref. [27] for more details. This capability of the models can help
more understanding of the material deformation and observed
phenomena.

5. Conclusions

In this paper, constitutive models are considered for inter-granular
deformation and grain boundary mechanisms. Grain boundary
mechanisms include: grain boundary sliding (GBS), grain boundary
diffusion (GBD) and grain growth. Micro-constitutive models are
proposed for GBS and GBD that correlate macro-stresses to
strain rates.

Besides the above mentioned boundary mechanisms, inter-
granular deformation is also predicted by three different approaches I:
the Taylor type polycrystalline approach, II: Von-Mises viscoplastic
model and III: a J2-J3 viscoplastic model.

It is shown that although model II and III perform much faster
than model I and can be calibrated with less effort but they can
well predict material behavior as accurate as model I. It is also
shown that in different stress states, model III is closer to model I
than model II.

The models were examined when hardening is also remark-
able. It was revealed that the models can predict material behavior
in various grain sizes, strains, strain rates and stress states. As an
example of this situation a superplastic tray forming is simulated
and compared with experimental observations.

Acknowledgments

The DB work was supported by the Romanian National Uni-
versity Research Council (CNCSIS), Program PCCE, Grant no. 6/2010.

References

[1] Chandra N. Constitutive behavior of superplastic materials. Int J Non-linear
Mech 2002;37:461–84.

[2] Agarwal S, Briant C, Krajewski P, Bower A, Taleff E. Experimental validation of
two-dimensional finite element method for simulating constitutive response
of polycrystals during high temperature plastic deformation. J Mater Eng
Perform 2007;16:170–8.

[3] Bower AF, Wininger E. A two-dimensional finite element method for simulat-
ing the constitutive response and microstructure of polycrystals during high
temperature plastic deformation. J Mech Phys Solids 2004;52:1289–317.

[4] Cipoletti DE, Bower AF, Qi Y, Krajewski PE. The influence of heterogeneity in
grain boundary sliding resistance on the constitutive behavior of AA5083
during high-temperature deformation. Mater Sci Eng: A 2009;504:175–82.

[5] Du N, Bower AF, Krajewski PE, Taleff EM. The influence of a threshold stress for
grain boundary sliding on constitutive response of polycrystalline Al during
high temperature deformation. Mater Sci Eng: A 2008;494:86–91.

[6] Kim JH, Semiatin SL, Lee CS. Constitutive analysis of the high-temperature
deformation of Ti–6Al–4V with a transformed microstructure. Acta Mater
2003;51:5613–26.

[7] Langdon TG. A unified approach to grain boundary sliding in creep and
superplasticity. Acta Metall Mater 1994;42:2437–43.

[8] Liu FC, Ma ZY. Contribution of grain boundary sliding in low-temperature
superplasticity of ultrafine-grained aluminum alloys. Scr Mater 2010;62:
125–128.

[9] Park SS, Garmestani H, Bae GT, Kim NJ, Krajewski PE, Kim S, et al. Constitutive
analysis on the superplastic deformation of warm-rolled 6013 Al alloy. Mater
Sci Eng: A 2006;435–436:687–92.

[10] Pan J, Cocks ACF. Computer simulation of superplastic deformation. Comput
Mater Sci 1993;1:95–109.

[11] Hyde KB, Bate PS. Dynamic grain growth in Al–6Ni: modelling and experi-
ments. Acta Mater 2005;53:4313–21.

[12] Rofman OV, Bate PS. Dynamic grain growth and particle coarsening in Al–
3.5Cu. Acta Mater 2010;58:2527–34.

[13] Rabinovich MK, Trifonov VG. Dynamic grain growth during superplastic
deformation. Acta Mater 1996;44:2073–8.

[14] Wilkinson DS, Cáceres CH. On the mechanism of strain-enhanced grain
growth during superplastic deformation. Acta Metall 1984;32:1335–45.

[15] Cáceres CH, Wilkinson DS. Large strain behavior of a superplastic copper
alloy – I. Deformation. Acta Metall 1984;32:415–22.

[16] Bontcheva N, Petzov G. Microstructure evolution during metal forming
processes. Comput Mater Sci 2003;28:563–73.

[17] Kim B-N, Hiraga K, Sakka Y, Ahn B-W. A grain-boundary diffusion model of
dynamic grain growth during superplastic deformation. Acta Mater 1999;47:
3433–9.

[18] Yoshizawa Y-I, Sakuma T. Grain growth acceleration during high temperature
deformation in high purity alumina. Mater Sci Eng: A 1991;149:59–64.

[19] Zhou M, Dunne FP. Mechanism-based constitutive equation for the super-
plastic behavior of a titanium alloy. J Strain Anal 1996;31:187–96.

[20] Khaleel MA, Johnson KI, Hamilton CH, Smith MT. Deformation modeling of
superplastic AA-5083. Int J Plasticity 1998;14:1133–54.

[21] Khraisheh MK, Abu-Farha FK, Nazzal MA, Weinmann KJ. Combined
mechanics-materials based optimization of superplastic forming of magne-
sium AZ31 alloy. CIRP Ann – Manuf Technol 2006;55:233–6.

[22] Ridley N, Bate PS, Zhang B. Material modelling data for superplastic forming
optimisation. Mater Sci Eng A 2005;410–411:100–4.

[23] Nazzal MA, Khraisheh MK, Abu-Farha FK. The effect of strain rate sensitivity
evolution on deformation stability during superplastic forming. J Mater
Process Technol 2007;191:189–92.

[24] Filograna L, Racioppi M, Saccomandi G, Sgura I. A simple model of nonlinear
viscoelasticity taking into account stress relaxation. Acta Mech 2009;204:
21–36.

[25] Bonet J, Gil A, Wood RD, Said R, Curtis RV. Simulating superplastic forming.
Comput Methods Appl Mech Eng 2006;195:6580–603.

[26] Krajewski PE, Hector Jr LG, Du N, Bower AF. Microstructure-based multiscale
modeling of elevated temperature deformation in aluminum alloys. Acta
Mater 2010;58:1074–86.

[27] Jafari Nedoushan R, Farzin M, Mashayekhi M, Banabic D. A microstructure-
based constitutive model for superplastic forming. Metall Mater Trans A
2012;43:4266–80.

[28] Dawson PR, MacEwen SR, Wu PD. Advances in sheet metal forming analyses:
dealing with mechanical anisotropy from crystallographic texture. Int Mater
Rev 2003;48:86–122.

[29] Kuwabara T, Van Bael A, Iizuka E. Measurement and analysis of yield locus and
work hardening characteristics of steel sheets wtih different r-values. Acta
Mater 2002;50:3717–29.

[30] Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D. Overview
of constitutive laws, kinematics, homogenization and multiscale methods in
crystal plasticity finite-element modeling: theory, experiments, applications,
Acta Materialia;58: p. 1152–211.

[31] Inal K, Neale KW, Aboutajeddine A. Forming limit comparisons for FCC and
BCC sheets. Int J Plast 2005;21:1255–66.

[32] Inal K, Wu PD, Neale KW. Finite element analysis of localization in FCC
polycrystalline sheets under plane stress tension. Int J Solids Struct 2002;39:
3469–86.

[33] Inal K, Wu PD, Neale KW. Instability and localized deformation in polycrystal-
line solids under plane-strain tension. Int J Solids Struct 2002;39:983–1002.

[34] Gawad J, Banabic D, Comsa DS, Gologanu M, Van Bael A, Eyckens P., et al.,
Evolving texture-informed anisotropic yield criterion for sheet forming, In:
AIP Conference Proceedings of the 9th International Conference and Work-
shop on Numerical Simulation of 3D Sheet Metal Forming Processes; 1567
2013 p. 350–356.

[35] Schurig M, Bertram A, Petryk H. Micromechanical analysis of the development
of a yield vertex in polycrystal plasticity. Acta Mech. 2007;194:141–58.

[36] Tugcu P, Neale KW, Wu PD, Inal K. Crystal plasticity simulation of the
hydrostatic bulge test. Int. J. Plast. 2004;20:1603–53.

[37] Peirce D, Asaro RJ, Needleman A. An analysis of nonuniform and localized
deformation in ductile single crystals. Acta Metall. 1982;30:1087–119.

[38] Peirce D, Asaro RJ, Needleman A. Material rate dependence and localized
deformation in crystalline solids. Acta Metall. 1983;31:1951–76.

[39] Asaro RJ. Cryst. Plast. J. Appl. Mech. 1983;50:921–34.
[40] Asaro RJ, John WH, Theodore YW. Micromechanics of crystals and polycrystals,

in: Advances in Applied Mechanics; Elsevier: 1983, p. 1–15.
[41] Huang Y. A user material subroutine incorporating single crystal plasticity in

the ABAQUS finite element program. Massachusetts: Harvard University;
1992.

[42] Taylor GI. Plastic Strain in Metal. J Inst Met 1938;62:307–24.
[43] McNelley TR, Oh-Ishi K, Zhilyaev AP, Swaminathan S, Krajewski PE, Taleff EM.

Characteristics of the transition from grain-boundary sliding to solute drag
creep in superplastic AA5083. Metall Mater Trans A 2008;39:50–64.

[44] Kulas M-A, Green WP, Taleff EM, Krajewski PE, Mcnelley TR. Deformation
mechanisms in superplastic AA5083 materials. Metall Mater Trans A
2005;36A:1249–61.

[45] Eric MT, Louis GH, John RB, Ravi V, Paul EK. The Effect of Stress State on High-
Temperature Deformation of Fine-Grained Aluminum–Magnesium Alloy
AA5083 Sheet 2009;57:2812–22.

R. Jafari Nedoushan et al. / International Journal of Mechanical Sciences 85 (2014) 196–204204


