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Abstract 
The paper presents a new anisotropic yield criterion and its implementation in the 
ABAQUS/Standard finite-element code. The yield criterion is an extension of the 
formulation proposed by Barlat and Lian in 1989. In order to obtain a better 
representation of the plastic behaviour of the orthotropic sheet metals, some additional 
coefficients have been included in the expression of the equivalent stress. The 
constitutive model has been used in the simulation of a hydraulic bulging process. The 
numerical results have been compared with experimental data. 

1 Introduction 
The mechanics of the sheet metal forming processes is greatly influenced by the plastic 
anisotropy of the material. In order to obtain a proper description of the anisotropy, the 
classical von Mises yield criterion should be modified. Hill proposed in 1948 /1/ a simple 
anisotropic yield criterion in the form of a quadratic function. Since then, several 
scientists have developed more and more sophisticated yield functions for anisotropic 
materials. Hill himself successively improved his criterion in 1979, 1990 and 1993 /2, 3, 
4/. Hosford /5/ initiated another interesting research direction by introducing an isotropic 
yield function based on crystallographic calculations. He also succeeded in extending this 
criterion to anisotropy /6/. During the last two decades, many other yield functions have 
been proposed aiming to improve the fitting with experimental data. Among the recent 
achievements in this field, one may notice the formulations proposed by Barlat and Lian 
/7/, Barlat et al. /8, 9, 10/, Karafillis and Boyce /11/, as well as Cazacu and Barlat /12/. A 
comprehensive description of the most important yield criteria can be found in /13/. 
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The yield criterion used in this paper has been derived from the one proposed by Barlat 
and Lian /7/. The new coefficients included in the expression of the equivalent stress 
improve its capability to represent the anisotropy of sheet metals. The identification 
procedure needs seven material parameters: the uniaxial yield stresses and the 
coefficients of plastic anisotropy associated to three planar directions (defined by an 
angle of 0, 45 and 90° measured from the rolling direction), as well as the equibiaxial 
yield stress associated to the rolling and transverse directions. 
The authors have included the new yield criterion into an elastoplastic constitutive model 
for membranes under plane-stress conditions. The constitutive model has been 
implemented as a UMAT subroutine in ABAQUS/Standard. The numerical simulation of 
a hydraulic bulging process has been performed in order to evaluate the performances of 
the model. 

2 Description of the new yield criterion  

2.1 Equation of the yield surface  

( ) :Y, =σΦ

A yield surface is generally described by an implicit equation having the form 
                                                                                                        (1) 0Y =−σ

where  is the equivalent stress and Y is a yield parameter. The sheet metal is assumed 
to behave as an orthotropic membrane under plane-stress conditions. Using this 
hypothesis, the equivalent stress is defined as follows: 

σ

( ) ( ) ( )( )[ ] k2
1

k2k2k2 2a1aa Ψ−+Ψ−Γ+Ψ+Γ=σ               (2) 
where  and  are material parameters, while Γ and Ψ are functions 
depending on the non-zero components of the stress tensor: 

1≤ ka0 ≤ ∗∈Ν

( ) 2112
22

22112211 ˆˆRˆQˆP,ˆNˆM σσ+σ−σ=Ψσ+σ=Γ                    (3) 

The coefficients M, N, P, Q and R in equation (3) are also material parameters. The stress 
components are expressed in an orthonormal basis coincident with the 

axes of plastic orthotropy (1 is the rolling direction – RD, 2 is the transverse direction – 
TD, while 3 is the normal direction – ND).  

)2,1=

1a ≤≤

,(ˆ βασαβ

One may prove that the yield surface defined by equations (1) – (3) is always convex in 
the stress space if 0  and k is a strictly positive integer number.    
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The shape of the yield surface is controlled by seven material parameters: k, a, M, N, P, 
Q and R. The integer exponent k has a special status. Its value is established in 
accordance with the crystallographic structure of the material /5/: 

  for BCC alloys 3k =

4   for FCC alloys.  k =

The other six parameters (a, M, N, P, Q and R) are established in such a way that the 
constitutive equations associated to the yield surface reproduce as well as possible the 
plastic behaviour of the sheet metal. The identification procedure is described in §2.4. 
One may notice that the equivalent stress defined by equations (2) – (3) is very similar to 
the expression proposed by Barlat and Lian /7/ for orthotropic sheet metals under plane-
stress conditions. In fact, the Barlat-Lian formulation may be obtained assigning 
particular values to the coefficients M, N, P, Q and R. 

2.2   Flow rule 
The flow  rule  associated  to  the  yield  surface  described  by equations (1) – (3) is /14/ 

2,1=β

( )2,1, =β

,,
ˆ

ˆ pp α
σ∂
Φ∂

ε=ε
αβ

αβ
&&                  (4) 

where are the planar components of the plastic strain-rate tensor (also 

expressed in the system of orthotropy axes), and 

ˆ p αεαβ
&

pε& is the equivalent plastic strain-rate. 
The last quantity is defined by the power law 

pˆˆ αβαβ εσ= &

2,1=α

pεσ &                   (5) 

Here and in the subsequent equations, the tensor summation rule is used (the Greek 
indices take the values 1 and 2, while the Latin ones take the values 1, 2 and 3). 
The non-planar components of the plastic strain-rate tensor are restricted by the plane-
stress condition for membranes and the isochoric character of the plastic deformation: 

pp
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ˆˆ
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αα

ε−=ε

=ε=ε
&&

&&

                 (6) 

2.3 Hardening law 
Assuming a purely isotropic hardening of the sheet metal, only one scalar parameter is 
needed for describing the evolution of the yield surface. This is the so-called plastic 
equivalent strain computed as the time-integral of the equivalent plastic strain-rate: 
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∫ ε=ε
T

0

pp dt&                   (7) 

The evolution of the yield surface has been taken into account by means of a Swift 
hardening law /14/: 

( )p KY =ε                  (8) ( )np0 ε+ε

where Y is the yield parameter (see equation (1)), while K, and n are material 
parameters. In this formulation, Y is chosen to be the uniaxial yield stress associated to 
the rolling direction. 

0ε

exp
0σ
exp
90σ
exp
45σ

exp
bσ

exp
0r
exp
90r
exp
45r

2.4 Identification procedure 
The parameters a, M, N, P, Q and R in the expression of the equivalent stress are 
computed in such a way that the constitutive equations associated to the yield surface 
reproduce as well as possible the following characteristics of the sheet metal: 

  yield stress obtained by a uniaxial tensile test along RD 

 yield stress obtained by a uniaxial tensile test along TD 

 yield stress obtained by a uniaxial tensile test along a direction equally inclined 

to RD and TD 
 yield stress obtained by an equibiaxial tensile test along RD and TD 

 coefficient of plastic anisotropy associated to RD 

 coefficient of plastic anisotropy associated to TD 

 coefficient of plastic anisotropy associated to a direction equally inclined to RD 

and TD. 
One may notice that seven conditions act on six material coefficients. Due to this over-
constraint, the authors have adopted an identification procedure based on the 
minimisation of the following error-function: 
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where  and  are the uniaxial yield stresses, the equibiaxial yield 

stress and the coefficients of plastic anisotropy predicted by the constitutive equations. 
The identification procedure needs formulas for evaluating these quantities. 

900 r, 45

ϕσ

oo 900 ≤ϕ≤

ϕ,2

( )

b45900 r,,,, σσσσ r

2.4.1 Prediction of the uniaxial yield stress 
Let   be the uniaxial yield stress associated to a direction inclined at an angle 

 to RD. The corresponding non-zero components of the stress tensor are 

ϕϕσ=σ=σ

σ=σϕσ=σ

ϕ

ϕϕ

cossinˆˆ
sinˆ,cosˆ

2112

22
2

11               (10) 

Equations (1) – (3) and (10) lead to the following formula for the uniaxial yield stress: 

ϕ=σϕ F
Y                 (11) 

where 

( ) ( ) ( ) ( )( )[ ] k2
1

k2k2k2 2a1aaF ϕϕϕϕϕ Ψ−+Ψ−Γ+Ψ+Γ=ϕ             (12) 

and 

( ) ϕϕ+ϕ−ϕ=Ψ

ϕ+ϕ=Γ

ϕ

ϕ

222222

22

cossinRsinQcosP

,sinNcosM
            (13) 

2.4.2 Prediction of the equibiaxial yield stress 
In case of an equibiaxial tension along RD and TD, the planar components of the stress 
tensor are 

0=ˆˆ,ˆˆ 2112b2211 σ=σσ=σ=σ               (14) 

Equations (1) – (3) and (14) lead to a formula for evaluating the equibiaxial yield stress: 

b
b F

Y=σ

]

                (15) 

where 

( ) ( ) ( )( )[ k2
1

k2
b

k2
bb

k2
bbb 2a1aaF Ψ−+Ψ−Γ+Ψ+Γ=             (16) 

and 
QP −

o ≤ϕ≤

,NM bb =Ψ+=Γ                (17) 

2.4.3 Prediction of the r-coefficient  
The r-coefficient associated to a direction inclined at an angle 0  to RD is 

defined as follows: 

o90
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p
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ε
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= +ϕ
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&
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90+ϕε&

o90+

0p
ND =ε&

                (18) 

where  is the planar component of the plastic strain-rate tensor associated to a 

direction inclined at to RD, and ε is the component of the same tensor 

associated to ND. After using the condition of plastic incompressibility 

ϕ p
ND&

p
90

p +ε+ε +ϕϕ &&                (19) 

Equation (18) becomes 

1p
ND

p
−

ε

ε
−= ϕ

&

&

p
ϕε&

ϕ p
ϕε&

rϕ                 (20) 

where is the component of the plastic strain-rate tensor associated to the direction 

inclined at the angle to RD. and may be rewritten using the tensor components 

expressed in the system of orthotropy axes: 

p
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                        (21) 

Because the r-coefficient is also defined for a uniaxial stress state, equations (10) are 
valid. It is then possible to write 

ϕϕϕϕ σ
σ

=
σ
σ

=ϕϕ
σ
σ

=ϕ
σ
σ

=ϕ 2112222112 ˆˆ
cossin,

ˆ
sin,

ˆ
cos             (22) 

Equations (20) – (22), (1) – (5), and (11) – (13) lead to the desired formula for evaluating 
the coefficient of plastic anisotropy: 

( )[ ]
( ) 1

G
F k2

−
ϕ

ϕ

90r,

r =ϕ                 (23) 

where 
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aaNMaaG  
(24) 

 
 

The identification procedure uses equations (11) – (13),  (15) – (17) and (23) – (24) to 
compute and . Due to the complexity of these formulas, the 

authors have developed a numerical minimisation strategy based on the downhill simplex 
method /15/. 

0b45900 r,,,, σσσσ 45r
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2.5 Numerical results of the identification procedure 
The identification procedure has been tested for an alluminium alloy (AA3003-0, 
thickness 1 mm). The mechanical parameters used as input data are listed in Table 1: 

  
Mechanical parameters AA3003-0 (thickness 1 mm) 

 57 MPa 

 55.6 MPa 

 57.5 MPa 

 58.5 MPa 

 0.848 

 0.796 

 0.875 

exp
0σ

exp
90σ

exp
45σ

exp
bσ

exp
0r
exp
90r
exp
45r

Table. 1 Mechanical parameters of an aluminium alloy (AA3003-0) 

 
Table 2 shows the coefficients provided by the identification procedure. The 
corresponding values of the parameters k and Y are also presented. 

 
Coefficients of the yield criterion AA3003-0 (thickness 1 mm) 

A 0.6576 
M 0.4676 
N 0.4735 
P 0.5077 
Q 0.5223 
R 1.0426 

 4 
 57 MPa 

k

Y

Table. 2 Coefficients of the yield criterion aluminium alloy (AA3003-0) 

 
These coefficients will be input data for the numerical simulation of a hydraulic bulging 
test. 
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2.6 Mechanical model of a hydraulic bulging test 
The sheet metal subjected to hydraulic bulging is assumed to behave as an elastoplastic 
membrane under plane-stress conditions. The elastic component of the strain is generally 
very small as compared to the plastic part, while the rotations of the material volumes are 
large. Due to the small amount of elastic deformation, the incompressibility condition is 
used when updating the thickness of the membrane. A linearly isotropic constitutive 
model describes the elastic behaviour of the sheet metal. On the other hand, its plastic 
behaviour is assumed to be orthotropic. The local axes of plastic orthotropy change 
continuously during the forming process (their current orientation is given by the 
rotational component of the deformation gradient tensor). The new yield criterion, its 
associated flow rule and the Swift hardening law presented in §2 describe the plastic 
behaviour of the sheet metal. 
A global coordinate system is used to express the current positions of the particles 
belonging to the membrane, as well as the external loads (generated by pressure in case 
of a hydraulic bulging process). Its unit vectors (denoted by e1, e2, e3 in Figure 1) are 
parallel to the initial axis of plastic orthotropy. 
 

 
 
Fig. 1 Vector bases used in the finite-element model  
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In order to simplify the manipulation of the plane-stress condition as well as the 
evolution of the plastic orthotropy, two orthonormal vector bases are attached to each 
particle. They are denoted by ı1, ı2, ı3 and î1, î2, î3 in Figure 1 and change continuously 
during the simulation of the forming process. Both bases have two vectors tangent to the 
membrane surface (ı1, ı2 and î1, î2, respectively). ı1 is obtained by projecting e1 onto the 
tangent plane. In case that e1 is almost perpendicular to the surface of the membrane, ı1 is 
calculated as the projection of e3. The unit vector ı3 is always perpendicular to the 
membrane, so its construction is straightforward. At last, ı2 results as the cross product of 
ı3 and ı1. The vectors î1, î2 and î3 are respectively coincident with the local axes of plastic 
orthotropy in the configuration under analysis. As mentioned above, the orientation of 
these axes is given by the rotational component of the deformation gradient tensor. The 
vectors î1, î2 and î3 can thus be obtained using the polar decomposition theorem /17/. 
The local bases are used to express the tensor components restricted by the plane-stress 
assumption, as well as to simplify the manipulation of the constitutive equations (see 
below). 
The finite-element model included in ABAQUS/Standard is based on the theorem of 
virtual work /17/: 

( )iu,δ

Ω
( )3,2,1iui =

i
ext uWd =Ωδεσ∫

Ω

αβαβ               (25) 

where  is the spatial domain occupied by the sheet metal in the current configuration, 
 are components of the displacement vectors connecting the reference and 

current positions of the particles, ( )3,2,1iui =δ are components of a virtual displacement 
field,   are non-zero components of the Cauchy stress tensor, ( )2,1, =βασαβ







∂

δ∂

α

β

x
u






+

∂
δ∂

=δε
β

α
αβ x

u
2
1                (26) 

is a virtual strain field, and ( )ii
ext u,uW δ is the virtual work associated to the external 

loads. In case of a hydraulic bulging process, this work is done by the pressure acting on 
one face of the sheet metal: 

( ) ∫ δ=δ
A

iii
ext npu,uW i dAu

A
( )3,2,1ini =

              (27) 

where is the current area of the membrane surface loaded by the pressure p, and 
are components of the unit vector perpendicular to this surface (this vector 

has the same orientation as the external load). 
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The vector components in equation (27) are expressed in the global basis e1, e2, e3. On 
the other hand, the tensor components in equation (25) are expressed in the local basis ı1, 
ı2, ı3. 
The mechanical model defined by equations (25)-(27) contains both kinematical and 
material non-linearities. Its solution is obtained using a Newton-Raphson procedure /17/. 
The linearization of equation (25) is constructed by retaining the first and second terms 
of its Taylor expansion in the vicinity of an approximate current configuration /17/: 

( ) ( ) ( ) ( )

( ) ( ) ( )∫

∫∫∫

Ω
αβαβ

αβ
βΩ α

ηβαη
Ω

αβηλαβηλ
Ω

αβ

Ωσδε−∆
∂
∂

+δ

=Ωσ
∂
∆∂

∂
δ∂

+Ωε∆σδε−Ωε∆δε

du
u

Wu,uW

d
x
u

x
ud2dC

i
i

ext

ii
ext

iiep

                     (28) 

where  are corrections of the displacement field components, ( )3,2,1i =ui∆
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are the corresponding corrections of the strain components, and  ( )2,1,,, =ληβαCep

αβηλ

( )2,1, =βα

 are 

components of the so-called elastoplastic modulus consistent with the Newton-Raphson 
scheme. This last quantity defines a relationship between the corrections of the stress and 
strain tensors /17/: 

( ) ( ) ( )ηλαβηλλβληαηβληλαηαβ ε∆=σ∆−∆σ+σ∆ epCRRRR (30) 
 

Rαβ  are components of the rotation tensor and ( )2,1,R =βα are their 

corrections. 

∆ αβ

Due to the fact that all the constitutive equations discussed in §2 contain tensors 
expressed in the system of plastic orthotropy axes, it is more convenient to start the 
evaluation of the elastoplastic modulus in the co-rotational basis î1, î2, î3. The transfer of 
the co-rotational components ( )2,1,,,ˆ ep =ληβααβηλC  to the general basis (ı1, ı2, ı3) consists 

in performing the following transformation /17/: 
(31) epep ĈRRRRC ωψϕξλξηϕβψαωαβηλ =

 
The co-rotational components ( )2,1,,,Ĉep =ληβααβηλ  can be calculated using the matrix 

formula /17/ 

[ ] [ ]
{ } [ ]{ }

[ ]{ }( ) { } [ ]( )eTe
eT

eep ĈĝĝĈ
HĝĈĝ

1ĈĈ ⋅
+

−=       (32)  
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The equations (34) – (36) need some explanations. The column-vector { }ĝ

Φ

H

 defines the 

gradient of the yield surface described by equations (1) – (3). It contains the first 
derivatives of the function  with respect to the co-rotational components of the stress 
tensor in the current approximate configuration. is the strain-hardening modulus. It is 
the first derivative of the Swift hardening law with respect to the equivalent plastic strain 
in the current approximate configuration (see equation (8)).  and pε1  are the 
equivalent plastic strains associated to the reference configuration and current 
approximate configuration, respectively. [ ]U  is the third-order unit matrix, while the 

other matrices used in equation (36) have the following structure: 
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1ĈĈ
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elements are the second order derivatives of the function Φ  with respect to the co-
rotational components of the stress tensor in the current approximate configuration. 

Finally,  is the classical elasticity matrix for plane-stress problems. Its elements 
depend on the Young’s modulus  and the Poisson’s ratio . 

[ ]eC

E ν

The simulation of the hydroforming process is divided into small time increments. For 
each increment, a finite-element approximation of equation (28) is solved numerically 
using a Newton-Raphson procedure. After achieving the convergence, the nodal 
coordinates and the state parameters of the elements are updated. These parameters are 
the plastic equivalent strain, the thickness of the membrane and the components of the 
stress tensor associated to the integration points. After updating, the current configuration 
of the finite-element model is taken as a reference status for the next increment. The 
simulation is stopped when the pressure acting on the sheet metal reaches its maximum 
value. 

2.7 Results and discutions 
The authors have implemented the elastoplastic material model in ABAQUS/Standard by 
means of a UMAT subroutine. This subroutine has been used for the simulation of a 
hydraulic bulging test. The forming process is schematically shown in Figure 2. The 
mechanical parameters of the sheet metal (AA3003-0; thickness 1 mm) are listed in 
Table 1. The circular specimen comes into contact with the clamping ring in the region of 
the fillet. The frictional component of this interaction is described by the classical 
Coulomb model implemented in ABAQUS/Standard (a friction coefficient  is 

assigned to the contact surface). The pressure of the liquid has been used as a control 
parameter. Its value is considered to have a linear variation from 0 to 4 MPa. 

15.0=µ

 
 
 
 
 
 

Fig. 2 Principle of the 
hydraulic bulging test 
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The elastic behaviour of the sheet metal is defined by the Young’s modulus 
 and the Poisson’s ratio MPa10401.6E ×= 33.0=ν . The plastic behaviour is defined by 

the coefficients of the yield criterion (see Table 2) and the coefficients of the Swift 
hardening law: K , MPa8.199= 0056.00 =ε  and 2005.0n = (see equation (8)). 

Due to the plastic orthotropy of the sheet metal, as well as the axial symmetry of the 
tools, only one quarter of the specimen needs to be meshed. The external boundary of the 
mesh corresponds to the clamping circle (see Figure 2). The radius of this circle is 58 
mm. All the nodes belonging to the external contour are completely restrained. The fillet 
radius of the clamping ring is 5 mm (see Figure 2). The mesh used in the simulation 
consists of 18 M3D3 elements and 504 M3D4 elements /17/, with a total number of 553 
nodes. 
The experimental work has been performed in the Institute of Metal Forming (IFU) of 
the University of Stuttgart. Three specimens have been subjected to the hydraulic bulging 
test. 
The polar deflection corresponding to different values of the liquid pressure has been 
recorded for each specimen. The results of these measurements are plotted in Figure 3 as 
discrete points. The dependence pressure vs. polar deflection predicted by the finite-
element programme is superimposed on the same diagram. One may notice a very good 
agreement between the numerical results and the experimental data. 
ABAQUS/Standard also computes the spatial distributions of the strain and stress 
components. A rectangular grid has been printed on each specimen. The distribution of 
the principal logarithmic strains at the end of the bulging test can thus be measured. 
Figures 4 and 5 show a comparison of the experimental and computed values of the 
principal logarithmic strains. 
As one may notice when examining the diagrams presented in Figures 4 and 5, the 
predictions of the elastoplastic model are in good agreement with the data obtained from 
experiments. Little differences between the computed and measured values of the 
principal logarithmic strains appear in the vicinity of the clamping edge. The frictional 
effects associated to the contact interactions between the specimen and the metallic ring 
are probably responsible for this inaccuracy. Another cause of the discrepancies may be 
the errors of the strain measurements in the clamping region (due to the high curvature of 
the sheet metal specimen at the end of the forming process). 
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Fig. 3 Pressure vs. polar deflection (comparison between 

numerical results and experimental data 
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Fig. 4 Computed and experimental distributions of the minor principal 

logarithmic strain at the end of the bulging test 
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Fig. 5 Computed and experimental distributions of the major principal 

logarithmic strain at the end of the bulging test 

3 Conclusions 
The hydraulic bulging test is particularly suitable for studying the mechanical response of 
sheet metals subjected to biaxial loads. The authors have used this test to evaluate the 
performances of a new yield criterion. The equibiaxial yield stress of the sheet metal is 
one of the parameters used in the identification procedure. Due to the close relation 
between this parameter and the mechanics of the hydraulic bulging process, the new 
yield criterion gives accurate predictions. The distributions of the principal logarithmic 
strains resulted from computations are in very good agreement with experimental data. 
The authors have noticed that the accuracy of the pressure vs. polar deflection curve is 
highly influenced by the hardening rule used in the model. 
  

 



16  Validation of a new anisotropic yield criterion through bulge test  Banabic 

References 

/1/ Hill, R. 
 

The Mathematical Theory of Plasticity 
Oxford: Clarendon Press, 1950 
 

/2/ Hill, R. 
 

Theoretical plasticity of textured aggregates 
In: Math. Proc. Cambridge Phil. Soc. 85 (1979) 179 
 

/3/ Hill, R. Constitutive modelling of orthotropic plasticity in sheet 
metals 
In: J. Mech. Phys. Solids 38 (1990) 405 

/4/ Hill, R. A user-friendly theory of orthotropic plasticity in sheet 
metals 
In: Int. J. Mech. Sci. 35 (1993) 19 

/5/ Hosford, W. F. A generalized isotropic yield criterion 
In: J. Appl. Mech. 39 (1972) 607 

/6/ Hosford, W. F. On yield loci of anisotropic cubic metals 
In: Proc. 7th North American Metalworking Conf.-
Dearborn (1979) 191 

/7/ Barlat, F. 
Lian, J. 

Plastic behavior and stretchability of sheet metals. Part I: 
Yield function for orthotropic sheets under plane stress 
conditions 
In: Int. J. Plasticity 5 (1989) 51 

/8/ Barlat, F. 
Lege, D. J. 
Brem, J. C. 

A six-component yield function for anisotropic materials 
In: Int. J. Plasticity 7 (1991) 693 

/9/ Barlat, F. 
Lege, D. J. 
Matsui, K. 
Murtha, S. J. 
Hattori, S. 
Becker, R.C. 
Makosey, S. 

Yield function development for aluminium alloy sheets 
In: J. Mech. Phys. Solids 45 (1997) 1727 

/10/ Barlat, F. 
Brem, J. C. 

Plane stress yield function for aluminium alloy sheets. Part 
I: Formulation 



Banabic   Validation of a new anisotropic yield criterion through bulge test                        17 

Yoon, J. W. 
Chung, K. 
Dick, R. E. 
Lege, D. J. 
Pourboghrat, F. 
Choi, S. H. 
Chu, E. 

In: Int. J. Plasticity (to be published) 

/11/ Karafillis, A. P. 
Boyce, M. C. 

A general anisotropic yield criterion using bounds and a 
transformation weighting tensor 
In: J. Mech. Phys. Solids 41 (1993) 1859 

/12/ Cazacu, O. 
Barlat, F. 

Application of the theory of representation to describe 
yielding of anisotropic aluminum alloys 
In: Int. J. Engng Sci. (to be published) 

/13/ Banabic, D. 
Bunge, H. J. 
Poehlandt, K. 
Tekkaya, A. E. 

Formability of Metallic Materials. Plastic Anisotropy, 
Formability Testing, Forming Limits 
Berlin: Springer Verlag, 2000 

/14/ Lemaître, J. 
Chaboche, J. L. 

Mécanique des matériaux solides 
Paris: Dunod, 1988 

/15/ Press, W. H. 
Teukolsky, S. H. 
Vetterling, W. T. 
Flannery, B. P. 

Numerical Recipes in C. The Art of Scientific Computing 
Cambridge: Cambridge University Press, 1992 

/16/ Vial, C. 
Hosford, W. F. 
Caddell, R. M. 

Yield loci of anisotropic sheet metals 
In: Int. J. Mech. Sci. 25 (1983) 899 

/17/ ABAQUS, Inc. ABAQUS Theory Manual. Version 6.2.3 
Electronic documentation 

   
 


	Introduction
	Description of the new yield criterion
	Equation of the yield surface
	2.2   Flow rule
	Hardening law
	Identification procedure
	Prediction of the uniaxial yield stress
	Prediction of the equibiaxial yield stress
	Prediction of the r-coefficient

	Numerical results of the identification procedure
	Mechanical model of a hydraulic bulging test
	Results and discutions

	Conclusions

