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a b s t r a c t

The paper deals with constitutive modeling of highly anisotropic sheet metals and presents FEM based
earing predictions in a round cup drawing simulation of highly anisotropic aluminum alloys where more
than four ears occur. For that purpose the BBC2008 yield criterion, which is a plane-stress yield criterion
formulated in the form of a finite series, is used. Thus defined criterion can be expanded to retain more or
less terms, depending on the amount of given experimental data. To be used in sheet metal forming
simulations the constitutive model, derived in accordance with the associated flow theory of plasticity,
has been implemented in a general purpose finite element code ABAQUS/Explicit via VUMAT subroutine,
considering alternatively different number of parameters in the BBC2008 yield criterion, where possible
number of parameters are any multiple of number 8. For the integration of the constitutive model the
explicit NICE (Next Increment Corrects Error) integration scheme has been used. The CPU time con-
sumption for an explicit deep drawing simulation, which is based on the developed constitutive model,
has been proven to be, due to effectiveness of the used integration scheme, fully comparable to the
performance experienced when the simulation is performed with ABAQUS built-in constitutive models
and implicit integration schemes. Two aluminum alloys, namely AA5042-H2 and AA2090-T3, have been
considered for a validation of the constitutive model. The respective BBC2008 model parameters have
been identified for both alloys with a developed numerical procedure, based on a minimization of the
specified cost function. For both materials, the simulation predictions based on the BBC2008 model prove
to be in very good agreement with the experimental results. Further, in order to show the flexibility of
the BBC2008 model in modeling of highly anisotropic sheet metal response, we have introduced a highly
anisotropic fictitious material which yields, according to the theory, twelve ears in cup drawing. As it is
shown in the paper the BBC2008 model is able to predict twelve ears in cup drawing simulation with the
formulation containing 16 parameters for anisotropy description only. The flexibility and accuracy of the
constitutive model together with the robust identification and integration procedure guarantee the
applicability of the BBC2008 yield criterion in industrial applications.

� 2013 Published by Elsevier Masson SAS.
1. Introduction

Numerical simulation has become an important analysis tool in
the manufacturing processes design. By shortening both the time
required in the D&R stage and the time needed for a corresponding
production implementation it contributes significantly to reducing
the overall production costs and failure rate. Becoming in this
ineering, University of Ljubl-
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regard indispensable, this computational instrument has extended
during the last decades its applicability to various industrial fields.
The consistency of the decisions made on the numerical simulation
basis is highly dependent on the attained degree of the physical
objectivity and numerical accuracy of the simulation. Many re-
searchers involved in this domain focused consequently their ef-
forts on improving both the quality of the theoretical models
implemented in the simulation programs and efficiency of there
applied computational strategies. Extensive past research per-
formed in the field of sheet metal forming processes has proven
that the adopted constitutivemodels have a strong influence on the
reliability of the obtained numerical simulation results. In this pa-
per we are analyzing, referring to the earing and height of
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investigated deep-drawn cylindrical cups, the influence of the yield
surface model on the quality of the computed predictions.

The earing phenomenon has been noticed in the early applica-
tions of the rolledmetallic sheets for the deep-drawing of cylindrical
parts (beginning of the 19th century). The number of ears is usually
four, but there are also situations when six or eight earsmay occur at
theupperedgeof thedrawncups.Aparticular evolutionof the earing
process is generally dependent on the anisotropy of the sheet metal
and specific lubrication conditions. A systematic analysis of this
phenomenon was performed by Baldwin et al. (1945). These re-
searchers were the first who noticed the similarity between the
planar distribution of the anisotropy coefficient and the earing pro-
file. On the basis of the experimental results reported by Baldwin
et al. (1945), Bourne and Hill (1950) evaluated the dependency be-
tween the earing amplitude and the values of the planar anisotropy
coefficients. Lateron, during the1960’s, BladeandPearson (1962/63),
Wright (1965/66), Buschman, (1966) and other researchers studied
the influence of several other parameters on the earing profile (ge-
ometry of the tools, gap between the die and punch surfaces, thick-
ness of the sheet metal, drawing ratio, blank-holding force, etc.). In
the same period of time, the earing phenomenon was also thor-
oughly investigated by several Russian researchers. The monograph
published by Sevelev and Iakovlev (1972) provides a detailed
description of their results. The cited work presents in a systematic
manner the influence of variousmaterial and process parameters on
the earing amplitude. It also gives an analytical formula that predicts
the height and thickness of the ears on the basis of the anisotropy
coefficient of the sheet metal. The theoretical results are also
compared with experimental data obtained for different materials.
The research started by Sevelev and Iakovlev has been continued in
the 1980’s by Grecinikovim (1985) who studied the influence of the
temperature on the earingprocess in the case of steel, aluminumand
brass. The results obtained by the Russian scientists have been pre-
sented in the monographs published by Matveeva (1987) and
Zharkov (1995). An analytical relationship for the calculation of the
earing profile on the basis of the plastic anisotropy coefficients has
been also deduced byHosford andCaddell (1983). Chung et al. (1996)
improved that formula and used it in the case of different materials.
They noticed the existence of a direct relation between the planar
distribution of the plastic anisotropy coefficient and the earing pro-
file, as well as between the planar distribution of the yield stress and
the earing amplitude. Barlat et al. (1991b) have also developed a
simple analytical model for the determination of the earing height
using the planar distribution of the yield stress. Yoon et al. (2006)
have extended that model and obtained a formula for the calcula-
tion of the cup height taking into account the dimensional charac-
teristics of the cylindrical part and flat blank, as well as the plastic
anisotropy. Later on, Yoon et al. have improved the accuracy of their
model by combining it with the one previously proposed by Barlat
et al. (1991b) and Yoon et al. (2006). The new analytical model
(Yoon et al., 2008) defines a relationship between the earing profile
and amplitude and the planar distribution of both the plastic
anisotropy coefficient and yield stress. Recently, Yoon et al. (2011b)
have developed a more accurate formulation that can be extended
to the case of the ironingprocess.Mulder andNagy, (2009), aswell as
Mulder et al. (2011) have also improved Yoon’s model (Yoon et al.,
2008) by taking the non-uniformity of the strain distribution on
the surface of the cup into account. Another analytical approach for
predicting the earing profile in the case of cylindrical cups, based on
the slip-line theory, has beenproposed by Jimma (1970/71), Sowerby
and Johnson (1974), and Chen and Sowerby (1996). Their analysis is
based on the plane strain hypothesis connected with Hill’s aniso-
tropic plasticity model.

Some researches use the crystallographic models for the earing
profile prediction. The early results obtained with such methods
are significant only from the qualitative point of view. The first
paper dealing with the crystallographic prediction of the earing
profile was published by Tucker in 1961 (Tucker, 1961). The model
developed by Tucker is restricted to a single aluminum crystal.
Recently Li et al. (2008) presented ear profiles in deep cup drawing,
obtained by rate dependent crystal plasticity model, and show the
comparison with experiments.

The development of the numerical techniques during the last
three decades allows the earing prediction to be done by a corre-
sponding finite element simulation of the considered sheet metal
forming process. The quantitative analyses related to the accuracy
of the numerical results show that the constitutive models, in
particular yield criteria, used in the simulation, have a significant
influence on the predicted earing profile. As a consequence, many
researchers have focused their interest on the investigation of
possibilities to improve the quality of the considered numerical
predictions by adopting more realistic material models. With the
aim of analyzing the earing profile the anisotropic yield criterion
proposed by Hill in 1948 (Hill, 1948) was extensively used in the
cup drawing process simulations. During the last two decades,
more sophisticated yield criteria have been developed (Barlat and
Lian, 1989; Barlat et al., 1991a; Barlat et al., 1997a; Barlat et al.,
1997b; Barlat et al., 2000; Karafillis and Boyce, 1993; Ferron et al.,
1994; Banabic et al., 2000; Cazacu and Barlat, 2001; Banabic
et al., 2005; Comsa and Banabic, 2007; Yoshida et al., 2013). Some
of those material models have been implemented in finite element
programs and used for a prediction of the earing profile. From the
publications devoted to this subject, we could mention the paper
published by Yang and Kim (1986) on the numerical prediction of
the earing profile using Hill 1948 yield criterion, as well as the
papers published by Barlat et al. (1990), Chung and Shah (1992) and
Habraken and Dautzenberg who used Barlat 1991 model (Barlat
et al., 1991a). In general, the earing prediction obtained when
adopting Barlat 1991 yield criterion exhibits a better accuracy.
Cvitanic et al. (2008) have also compared the earing predictions of
two plasticity models, namely Hill (1948) and Karafillis and Boyce
(1993). The superior quality of the results obtained when using
the KarafilliseBoyce model has been emphasized and explained by
the authors. By considering three different yield criteria: Hill
(1948), Barlat and Lian (1989), Gotoh (1977) and Hu et al. (2001)
have thoroughly analyzed the influence of the anisotropy co-
efficients on the earing profile and its evolution. Their analysis has
been focused on materials having a strong planar anisotropy. A
comparative study on the accuracy of the predictions referring to
the planar distribution of the uniaxial yield stress and the anisot-
ropy coefficient and its relationship with the prediction of the
earing profile has been performed by Soare et al. (2007) using Hill
1948 (Hill, 1948), Barlat 1996 (Barlat et al., 1997b) and Cazacu and
Barlat (Cazacu and Barlat, 2001) yield criteria. A better quality of the
earing predictions has been also noticed by Cosovici and Banabic
(2005) in the case of the BBC 2000 yield criterion (Banabic et al.,
2003) as compared to other constitutive models (Hill 1948 (Hill,
1948), Hill 1990 (Hill, 1990) and Barlat 1989 (Barlat and Lian,
1989)). Soare et al. (2008) have analyzed the predictive capabil-
ities of the polynomial yield criteria Poly 6 and Poly 8 and
concluded that the accuracy of the calculated earing profile de-
pends on the quality of the anisotropy description and not on the
mathematical formulation of the constitutive model. Comsa and
Banabic (2007) have shown that the yield criteria having the
capability to describe the anisotropic behavior of sheet metals in
more detail generally provide better predictions of the earing
profile. A systematic analysis of the topics related to the finite
element prediction of earing of drawn cups has been performed in a
series of papers by Yoon et al. (1995, 1998, 1999, 2000, 2004, 2006,
2011b, 2011a). Yoon et al. have focused their research interest on
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investigating the capability of advanced yield criteria (Barlat 1991
(Barlat et al., 1991a), Barlat 1994 (Barlat et al., 1997a), Barlat 1996
(Barlat et al., 1997b), Barlat 2000 (Barlat et al., 2003), and Cazacu
et al. (Cazacu et al., 2006)) to describe the earing profile. These
studies have led to the development of an accurate constitutive
model, based on distortional hardening, for the calculation of the
earing amplitude (Yoon et al., 2011a). Soare and Barlat (2010) re-
ported that some of the recently proposed orthotropic yield func-
tions obtained through the linear transformationmethod are in fact
homogeneous polynomials, which simplifies FEM implementation
of them. Chung at al. recently used different anisotropic yield
function (Chung et al., 2011a) to model mechanical response of
TWIP (twinning induced plasticity) automotive sheets including
earing prediction. Also, Taherizadeh et al. (2010, 2011) reported,
that prediction of earing can be significantly improved with the use
of non-associated flow rule and mixed hardening model. Another
approach was presented by Hallberg et al. (2007), who present a
FEM simulation of cup drawing with constitutive model, which
consider the formation of martensite in austenitic steels.

As mentioned above, cylindrical cups obtained by deep-drawing
usually exhibit four ears. In the case of some materials having more
specific anisotropy six or eight ears may develop during the
drawing process as well. The experimental and theoretical studies
have proved the existence of direct relationship between the
number of ears and the variation of the anisotropy coefficient in the
plane of the sheet metal. Namely, the occurrence of more than four
ears can be predicted only by yield criteria that use at least eight
material parameters associated to different planar directions in the
identification procedure. In fact, such plasticity models have been
developed mainly as a response to this challenge. An analysis of the
number of mechanical parameters needed for describing the
anisotropy and their influence on the predicted earing profile has
been performed by Soare and Banabic (2008) using the Poly 8 yield
criterion. The first yield criterion that uses more than eight me-
chanical characteristics in the identification procedure has been
developed by Barlat et al. (2005). The capability of this model to
predict the occurrence of six or eight ears in the drawing of cylin-
drical cups has been proved by Yoon et al. in a series of papers (Yoon
et al., 2006, 2008, 2011b; Rousselier et al., 2009). Aiming at further
improvement of the accuracy of the earing predictions Yoon et al.
(2010) have also taken into account the evolution of the anisot-
ropy during the sheet metal forming process. Soare and Barlat
(2011) constructed ad-hoc extension of Yld2004 yield criterion in
order to model finer detail in yield surface. Yoon et al. (2011a) have
recently analyzed the capability of the series based yield criterion
developed by Plunkett et al. (2008) to predict the earing profile of
an aluminum alloy exhibiting strong anisotropy. Kim et al. (2008)
used Srp2004-18p (Kim et al., 2007) plastic strain rate potential
in order to predict more than four ears for AA2090-T3 aluminum
alloy, whereas Park and Chung have used the Yld2000-2d yield
criterion with non-associated flow rule (Park and Chung, 2012) to
predict ears for AA2090-T3 and AA5042 aluminum sheets. The
prediction reported is in quite good agreement with experiment.

Due to the increased processing capabilities of the computers,
the solution of polycrystalline models has become possible. Recent
results obtained using such models are presented in the papers
(Raabe et al., 2005; Lela et al., 2009), as well as in the monographs
published by Raabe et al. (2004) and Roters et al. (2010). Rousselier
et al. (2009, 2010) use reduced texture of anisotropic hardening
modified model to predict ears of 2090-T3 aluminum alloy. In such
case the CPU time of the polycrystalline model is only five times
larger than that with the simple von Mises model.

Chung and Shah (1992) and Chung et al. (1996) among others
carried out simulations of a cylindrical cup drawing test using
strain rate potentials suggested by Barlat et al. (1993). Rabahallah
et al. (2009) also reported comparative results referring to the
earing prediction with several strain-rate potentials (Srp 1993
(Barlat et al., 1993), Quantus (Arminjon et al., 1994), Srp 2004
(Barlat and Chung, 2005)).

Recently, a general plane-stress yield criterion (BBC2008) defined
as anextensionof theBBC2005model (Banabic et al., 2005) has been
proposed by Comsa and Banabic (2008). Since in the identification
procedure related to material characterization considering the new
constitutive model more than eight mechanical parameters can be
used, a more accurate description of the anisotropy is possible in
comparison to the BBC 2005. The capability of the BBC2008 yield
criterion to predict occurrence of more than four ears will be proved
in the next sections of this paper by a numerical simulation of the
cylindrical cup deep-drawing in the cases of two aluminum alloys
and a fictitious material with highly anisotropic properties.
2. The BBC2008 yield criterion

The BBC2008 yield criterion is a plane-stress criterion, devel-
oped to describe the plastic behavior of highly orthotropic sheet
metals (Comsa and Banabic, 2008). The yield surface defined by this
model results from the implicit equation

Fðs11;s22;s12 ¼ s21;YÞ :¼ sðs11;s22;s12 ¼ s21Þ � Y ¼ 0 (1)

where sðs11; s22; s12 ¼ s21Þ � 0 is the equivalent stress (see
below), Y > 0 is the yield stress, while s11, s22, and s12 ¼ s21 are
planar components of the stress tensor expressed in an ortho-
normal basis (1,2,3) superimposed upon the local axes of plastic
orthotropy and the third unit vector of the local basis being always
perpendicular to the mid-surface of the sheet metal (see Fig. 1).

The elasto-plastic constitutive model is completed with a defi-
nition of the respective state variables’ evolution equations

dsij ¼ Cijkl
�
d 3kl � d 3

p
kl

�
d 3

p
ij ¼ vF

vsij
dl

d 3
p
eq ¼ skl

vF
vskl
Y dl

Y ¼ Y
�

3
p
eq

�
(2)

considering a decomposition of the total strain into elastic and
plastic strain d 3ij ¼ d 3eij þ d 3

p
ij, the associative flow rule and work

hardening. Above, Cijkl is the elastic stiffness tensor, l is the plastic
multiplier, 3

p
eq is the equivalent plastic strain and Y is yield stress.

In the particular case of the BBC2008 yield criterion, the
equivalent stress is defined as follows (Comsa and Banabic, 2008):

s2k
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nðrÞ1 s11 � nðrÞ2 s22

i2 þ hnðrÞ3 ðs12 þ s21Þ
i2r
;

k; s˛Nnf0g; w ¼ ð3=2Þ1=s > 1;

[
ðrÞ
1 ; [

ðrÞ
2 ;mðrÞ

1 ;mðrÞ
2 ;mðrÞ

3 ;nðrÞ1 ;nðrÞ2 ;nðrÞ3 ˛R: (3)

The quantities denoted above as k, [ðrÞ1 , [ðrÞ2 , mðrÞ
1 , mðrÞ

2 , mðrÞ
3 , nðrÞ1 ,



Fig. 1. Material orthotropy and definition of (1,2,3) and (x,h,2) coordinate systems.
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nðrÞ2 and nðrÞ3 ðr ¼ 1;.; sÞ are material parameters. It is easily
noticeable that the equivalent stress defined by Eq. (3) reduces to
the isotropic formulation proposed by Barlat and Richmond (Barlat
and Richmond, 1987) if

[
ðrÞ
1 ¼ [

ðrÞ
2 ¼ mðrÞ

1 ¼ mðrÞ
2 ¼ mðrÞ

3 ¼ nðrÞ1 ¼ nðrÞ2 ¼ nðrÞ3

¼ 1=2; r ¼ 1;.; s: (4)

Under these circumstances, the value of the integer exponent k
may be adopted according to the crystallographic structure of the
sheet metal, as in Barlat and Richmond’s model: k ¼ 3 for BCC al-
loys, and k ¼ 4 for FCC alloys.

The other material parameters involved in Eq. (3) are evaluated
upon a corresponding identification procedure. Their number is
np ¼ 8s, wheres˛Nnf0g is the summation limit. Let ne be the
number of experimental values describing the plastic anisotropy of
the sheet metal. If ne � 8; the summation limit s must be chosen
according to the constraint s � ne=8. When ne < 8, the minimum
value s ¼ 1 must be adopted. In this case, the identification con-
straints obtained from experiments should be accompanied by at
least 8 � ne artificial conditions involving the material parameters.
For example, if ne ¼ 6, one may enforce mð1Þ

1 ¼ nð1Þ1 and
mð1Þ

2 ¼ nð1Þ2 :

The crucial property of the yield surface regarding its parame-
ters is its convexity. In Appendix A an extensive analysis on this
topic is presented, which confirms that there is no constraint acting
on the admissible values of thematerial parameters, included in the
expression of the equivalent stress.
3. Identification of the BBC2008 yield criterion parameters

Due to expandable structure of the BBC2008 yield criterion
many identification strategies can be devised. Comsa and Banabic
developed a numerical procedure based on the minimisation of an
error-function operating only with normalized yield stresses and r-
coefficients obtained from uniaxial/biaxial tensile tests (Comsa and
Banabic, 2008).

Let Yq be the yield stress predicted by the yield criterion in the
case of uniaxial traction along a direction which is inclined by the
angle q from the rolling direction. The considered in-plane di-
rections are denoted in Fig. 1 by axes x and 1, respectively. Corre-
spondingly, we denote by 2 the direction transversal to the rolling
direction and by h the direction, defined by the angle qþ 90+, while
axis 3 ¼ 2 denotes the direction perpendicular to the sheet plane.
The planar components of the stress tensor are in this case

s11jq ¼ Yq cos
2 q; s22jq ¼ Yq sin

2 q; s12jq ¼ s21jq
¼ Yq sin q cos q (5)

After replacing them in Eq. (3), one gets the associated equiva-
lent stress

sjq ¼ YqFq (6)

where Fq is defined by the relationships
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(7)

Eqs. (1) and (6) lead to the following expression of the
normalized uniaxial yield stress:

yq ¼ Yq
Y

¼ 1
Fq

(8)

The r-coefficient corresponding to the uniaxial traction along x
direction is defined by the formula

rq ¼ d 3
p
hh

d 3
p
33

(9)

where d 3
p
hh is the plastic strain-rate component associated to h

direction and d 3
p
33 is the through-thickness component of the same

tensor. After some simple mathematical manipulations, Eq. (9)
becomes

rq ¼ Fq
Gq

� 1 (10)

where Gq is defined by the relationships



Table 1
Anisotropy characteristics of the AA2090-T3 aluminum alloy (Yoon et al., 2006).

yðexpÞ0� yðexpÞ15� yðexpÞ30� yðexpÞ45� yðexpÞ60� yðexpÞ75� yðexpÞ90� yðexpÞb
1 0.961 0.910 0.811 0.810 0.882 0.910 1.035
rðexpÞ0� rðexpÞ15� rðexpÞ30� rðexpÞ45� rðexpÞ60� rðexpÞ75� rðexpÞ90� rðexpÞb
0.212 0.327 0.692 1.577 1.039 0.538 0.692 0.670
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(11)

together with Eq. (7).
Let us denote by Yb the yield stress predicted by the constitutive

model in the case of in-plane uniform biaxial traction. The corre-
sponding planar components of the stress tensor are

s11jb ¼ Yb; s22jb ¼ Yb; s12jb ¼ s21jb ¼ 0 (12)

After replacing them in Eq. (3), one gets the associated equiva-
lent stress

sjb ¼ YbFb (13)

where Fb is defined by the relationships
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Eqs. (1) and (13) lead to the following expression of the
normalized biaxial yield stress:

yb ¼ Yb
Y

¼ 1
Fb

(15)

The r-coefficient corresponding to the biaxial traction is defined
by the formula

rb ¼ d 3
p
22

d 3
p
11

(16)

After some simple mathematical manipulations, Eq. (16)
becomes

rb ¼ Fb
Gb

� 1 (17)

where Gb is defined by the relationships
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bLðrÞb ¼ [
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1 ; bMðrÞ

b ¼ mðrÞ
1 ; bNðrÞ

b ¼ nðrÞ1 (18)

together with Eq. (14).
An identification procedure that strictly enforces a large number

of experimental constraints on the yield criterion would be ineffi-
cient in practical applications. The failure probability of such a
strategy increases when the external restrictions become stronger.
Taking into account this aspect, Comsa and Banabic, (2008)
developed an identification procedure based on the minimization
of the following error-function:

E
h
[
ðrÞ
1 ;[

ðrÞ
2 ;mðrÞ

1 ;mðrÞ
2 ;mðrÞ

3 ;nðrÞ1 ;nðrÞ2 ;nðrÞ3

���r¼1;.;s
i
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24yðexpÞqj

yqj
�1

352þX
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h
rðexpÞ
qj

�rqj
i2þ"yðexpÞb

yb
�1

#2
þ
h
rðexpÞb �rb

i2
(19)

where qj represents an individual element from a finite set of angles
defining the orientation of the specimens used in the uniaxial
tensile tests. One may notice that Eq. (19) describes a square-
distance between the experimental and predicted values of the
anisotropy characteristics. The minimization has been performed
using a modified LevenbergeMarquardt algorithm, in which Jaco-
bian of the error-function is evaluated numerically by forward-
difference approximations.

The numerical tests performed by the authors have been
focused on predicting the ear amplitude of a deep-drawn cup made
from two aluminum alloys, AA5042-H2 and AA2090-T3. The nu-
merical values have been taken from literature (Yoon et al., 2006,
2010).

Two versions of the BBC2008 yield criterion have been evalu-
ated from the point of view of their performances. They include 8
and 16 material coefficients, respectively, and correspond to the
smallest values of the summation limit (s ¼ 1 and s ¼ 2). The
identification of the 16p BBC2008 model for both materials has
been performed using all the mechanical parameters listed in
Tables 1 and 2. In the case of the 8p BBC2008, the input data have
been restricted to the values yðexpÞ0+ , yðexpÞ45+ , yðexpÞ90+ , yðexpÞb , rðexpÞ0+ , rðexpÞ45+ ,
rðexpÞ90+ , and rðexpÞb . For comparison reasons the performance of the
BBC2008model is compared to the Yld2000-2d (Barlat et al., 2003),
the Yld2004-18p (Barlat et al., 2005) and the CPB06ex2 (Plunkett
et al., 2008) models, where possible.

3.1. Identification of the BBC2008 parameters for AA2090-T3

The input data, taken into identification procedure of the
BBC2008 model parameters, are shown in Table 1.

Tables 2 and 3 contain the results of the identification procedure
for the BBC2008 8p and the BBC2008 16p version, respectively.

From the point of flexibility of the model, it is interesting to
show a comparison between the experimental data and the pre-
dictions of the BBC2008 model referring to the planar distribution
of the normalized yield stress and r-coefficient in uniaxial tension.
Fig. 2 shows the reproduction of r-coefficient and Fig. 3 show the
reproduction of normalized yield stress. Also, the predictions of the



Table 2
Identified parameters of the 8p BBC2008 version � aluminum AA2090-T3.

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3 nð1Þ1 nð1Þ2 nð1Þ3
4 1 1.5000 0.4499 0.5132 0.6303 0.6014 0.7273 0.1538 0.4794 0.4998

Table 3
Identified parameters of the 16p BBC2008 version � aluminum AA2090-T3.

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3 nð1Þ1 nð1Þ2
4 2 1.2247 0.1309 0.6217 0.7834 0.6604 0.79 � 10�4 0.1110 0.0482
nð1Þ3 lð2Þ1 lð2Þ2 mð2Þ

1 mð2Þ
2 mð2Þ

3 nð2Þ1 nð2Þ2 nð2Þ3
0.3075 1.0339 �0.0720 1.13 � 10�4 0.77 � 10�4 0.5380 0.0558 1.0186 0.7781
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Yld2002-2d, the Yld2004-18p and the CPB06ex2 models are shown
in the same plots for comparison reason.

The 8p version of the BBC2008 model is able to reproduce
exactly all the input data used in the identification. This situation is
a consequence of the fact that the yield surface is subjected to fewer
constraints when only eight experimental values are used. Due to
this fact, its performances are far from being satisfactory when
analyzing the predictions of r-coefficient at directions 15�, 30�, 60�

and 75� (Fig. 2). In contrast, the planar distribution of r-coefficients
is closely followed by the 16p version of the BBC2008model. In fact,
with the detailed analyze of the predicted r-coefficients we can
conclude, that for observed material the BBC2008 16p predicts r-
coefficients even better than the Yld2004-18p and the CPB06ex2
models.

Another task of the anisotropic yield criterion is to predict
planar distribution of normalized uniaxial yield stress. From
observing Fig. 3 one may notice that the uniaxial yield stress pre-
diction of the 8p version of the BBC2008 is similar to the prediction
of the Yld2002-2d model, as expected. The 16p version of the
BBC2008 again outperforms the prediction of 8p version and is
from qualitative point of view similar to the predictions of the
Yld2004-18p and the CPB06ex2 prediction.

Fig. 4 shows the shape of the normalized yield surface for the 8p
and 16p versions of the BBC2008 model.
3.2. Identification of the BBC2008 parameters for AA5042-H2

In the case of AA5042-H2 material there are more available
input data that can be taken into identification procedure of the
BBCmodel. In the paper of Yoon et al. (2010) beside Lankford values
and initial yield stress ratios also yield stress ratios at 10% of
Fig. 2. Planar distribution of r-coefficient predicted by the BBC2008 model for the
AA2090-T3 aluminum alloy.
equivalent plastic deformation are measured. The measured data
for AA5042-H2 aluminum alloy are shown in Table 4, whereas
superscript (exp 0.1) denotes, that data have been measured at 10%
of equivalent plastic strain.

The same procedure as in the case of AA2090-T3 aluminum alloy
has been followed to obtain the BBC2008 model parameters for
AA5042-H2 aluminum alloy. Two sets of parameters were identi-
fied independently as consequence of two sets if input data for
AA5042-H2 (initial yield stress ratios and yield stress ratios at 10%
of equivalent plastic deformation). The identified parameters are
shown in Tables 5e8.

Again, as in the case of AA2090-T3 aluminum alloy, it is inter-
esting to show comparisons between the experimental data and
the predictions of the BBC2008 model referring to the planar dis-
tribution of the normalized yield stress and r-coefficient in uniaxial
tension.

Figs. 5 and 6 show the predictions of planar distribution of the
normalized yield stress and r-coefficient in uniaxial tension pro-
vided by the BBC2008 model for the initial yield stress ratios. For
the sake of comparison, also the prediction, made by the CPB06ex2
model are included.

Again, the agreement between experimental and predicted
Lankford values and yield stress ratios is better in the case of 16p
version of BBC2008, as expected. The 16p version of BBC2008 fits
the Lankford values even better as CPB06ex2 model. The prediction
of stress ratios for 16p version of BBC2008 is in the same level as the
prediction of CPB06ex2 model.

The identification was performed also on second set of data,
thus on the same Lankford values but considering yield stress ratios
at 10% of equivalent plastic strain. Agreement between experi-
mental and predicted Lankford values is shown on Fig. 7, whereas
Fig. 8 shows the agreement between planar yield stress ratios
distribution.
Fig. 3. Planar distribution of normalized uniaxial yield stress predicted by the
BBC2008 model for the AA2090-T3 aluminum alloy.



Fig. 4. Normalized yield surface predicted by the BBC2008 model for the AA2090-T3
aluminum alloy.

Table 5
Identified parameters of the 8p BBC2008 version � aluminum AA5042-H2 (initial
yield stress ratios).

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3
4 1 1.5 0.6473 0.3478 0.5540 0.5914 0.5813
nð1Þ1 nð1Þ2 nð1Þ3
0.2796 0.5388 0.4866
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Again, 16p version better fits the experimental data as 8p
version of the BBC2008 yield criterion, as expected. In comparison
with the CPB06ex2 model 16p version of the BBC2008 better pre-
dict r-values whereas the prediction of yield stress distribution is at
least qualitatively slightly better with the CPB06ex2 model. Since
according to the experimental and theoretical observations
formulated by Yoon et al. (2006) and Chung et al. (2011b), the
earing profile of a drawn cup is mainly determined by the r-dis-
tribution, the slight disagreement in yield stress distribution is
acceptable. Fig. 9 shows the shape of the normalized yield surface
for 8p and 16p versions of the BBC2008 model for AA5042-H2
aluminum alloy.

The difference between both models in biaxial region is mainly
due to the fact that in the identification procedure of the CPB06ex2
model the biaxial r-value was not considered.
4. Implementation of the BBC2008 yield criterion in ABAQUS

The above presented constitutive model has been implemented
in a general purpose finite element code ABAQUS via VUMAT
subroutine (ABAQUS Version 6.8, 2006). For the integration of the
constitutive model the NICE (Next Increment Corrects Error) explicit
integration scheme, developed recently by some co-authors, is
used. Its task is to find a proper increment of the plastic multiplier
Dl from a given total strain increment D 3ij. The basic ideas of the
NICE scheme are presented in Halilovic et al. (2009), whereas in Vrh
et al. (2010) its theoretical background is adequately elaborated.
The comparison studies and the proof given in the appendix of the
latter paper show, that accuracy of the new scheme is comparable
to the accuracy of the backward-Euler scheme, while it is
Table 4
Anisotropy characteristics of the AA5042-H2 aluminum alloy (Yoon et al., 2010).

yðexpÞ0+ yðexpÞ15+ yðexpÞ30+ yðexpÞ45+ yðexpÞ60+ yðexpÞ75+ yðexpÞ90+ yðexpÞb
0.902 0.914 0.923 0.924 0.932 0.946 0.940 1
yðexp 0:1Þ
0+ yðexp 0:1Þ

15+ yðexp 0:1Þ
30+ yðexp 0:1Þ

45+ yðexp 0:1Þ
60+ yðexp 0:1Þ

75+ yðexp 0:1Þ
90+ yðexp 0:1Þ

b
0.929 0.931 0.921 0.911 0.911 0.929 0.935 1
rðexpÞ0+ rðexpÞ15+ rðexpÞ30+ rðexpÞ45+ rðexpÞ60+ rðexpÞ75+ rðexpÞ90+ rðexpÞb
0.354 0.239 0.640 1.069 1.279 1.224 1.396 0.991
computationally far more (up to ten times) efficient in explicit
dynamics simulations.

An implementation of the constitutive model via user subrou-
tine requires integration of the constitutive model along a known
strain path, which is mathematically reflected in known total strain
increments D 3ij. Although a deduction of the NICE integration
scheme is general, its implementation for shell applications needs a
particular care. Namely, in order to satisfy the zero normal stress
condition during the whole integration a through-thickness strain
increment has to be adequately chosen in each integration step.

4.1. Treatment of zero normal stress constraint in shell applications

Because the proposed yield criterion can be used in plane-stress
applications only, the through-thickness strain increment D 333
cannot be determined from a displacement field directly, but
indirectly. A general approach to the through-thickness strain
increment calculation is derived in Vrh et al. (2010). In classical
elasto-plastic plane stress applications the user of the NICE scheme
can calculate the through-thickness strain increment with the
following simple equation

D 333 ¼ �
C33klD 3*kl �

�
Fþ vF

vsij
CijklD 3*kl

�
Qb�

C3333 �Q2b
� (20)

where

b ¼
 
vF
vsij

Cijkl
vF
vskl

� vF
vY

dY
d 3

p
eq

vF
vsij

sij

Y

!�1

; Q ¼ vF
vsij

Cij33 ;

3
*
ij ¼

0 ; i ¼ j ¼ 3
3ij ; otherwise

�
(21)

and Cijkl is the elasticity tensor, Y ¼ Yð 3
p
eqÞ is the yield stress as a

function of the equivalent plastic strain 3
p
eq and F(sij,Y) is the plastic

potential.
With reference to here discussed BBC2008 yield criterion (see

Eqs. (1) and (3)) an alternative form will be used in the numerical
implementation for the plastic potential (see Eq. (31)). Either of
these two representations Fðs11; s22; s12 ¼ s21;YÞ ¼ 0 is actually
a plane stress representation of the respective yield criterion
F(sij,Y) ¼ 0, which is expressed in terms of arbitrary stress state
components sij. Thus, the following relationship holds

Fðs11; s22; s12 ¼ s21; YÞ ¼ F
�
sij; Y ; si3 ¼ s3j ¼ 0

	
(22)
Table 6
Identified parameters of the 16p BBC2008 version � aluminum AA5042-H2 (initial
yield stress ratios).

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3
4 2 1.2247 0.3527 �0.7187 0 0 �0.8769
nð1Þ1 nð1Þ2 nð1Þ3 lð2Þ1 lð2Þ2 mð2Þ

1 mð2Þ
2 mð2Þ

3
�0.4479 �0.0714 �0.2061 0.7275 0.3431 �0.5720 �0.6217 0.5675
nð2Þ1 nð2Þ2 nð2Þ3
�0.2992 �0.6359 0.



Table 7
Identified parameters of the 8p BBC2008 version � aluminum AA5042-H2 (yield stress ratios at 0.1 of equivalent plastic deformation).

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3
4 1 1.5 �0.6124 �0.3847 �0.5490 �0.5776 0.5990
nð1Þ1 nð1Þ2 nð1Þ3
�0.3110 �0.5538 �0.4826
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While the functional form of Fðs11; s22; s12 ¼ s21;YÞ is known
explicitly this is not the case for function F(sij,Y). Yet, in the
equations above, as well as in the corresponding evolution equa-
tions of the problem state variables which are in (27) given in their
incremental form, derivatives of function F(sij,Y) are required. In
overcoming this enigma we shall first take the properties of partial
differentiation into account, which yields when the plane stress
state is considered

vF
vsij

¼ vF
vsij

; i; j˛f1;2g ^ s13 ¼ s23 ¼ s33 ¼ 0 (23)

The plane state stress is also characterized by d 3
p
13 ¼ d 3

p
23 ¼ 0,

which yields when the corresponding evolution Equation (27) are
considered

vF
vsi3

¼ vF
vsi3

¼ 0; i˛f1;2g ^ s13 ¼ s23 ¼ s33 ¼ 0 (24)

The remaining derivative vF/vs33 may be computed from the
plastic incompressibility condition d 3

p
kk ¼ 0, which yields in

accordance with (27)

vF
vs33

¼�



vF
vs11

þ vF
vs22

�
¼�



vF
vs11

þ vF
vs22

�
; s13 ¼ s23 ¼ s33 ¼ 0

(25)

4.2. Integration of the BBC2008 constitutive model with the NICE
scheme

Assuming, that in each increment the total strain incrementsD 3ij

except D 333, which can be calculated by considering (20), are
available from the computed increments of the displacement field,
the stress state at the end of the incrementmust be calculated using
the following system of algebraic equations:

F
�
sij; Y

	 ¼ 0 (26)

Dsij ¼ Cijkl
�
D 3kl � D 3

p
kl

�
D 3

p
ij ¼ vF

vsij
Dl

D 3
p
eq ¼ skl

vF
vskl
Y Dl

DY ¼ vY
v 3

p
eq
D 3

p
eq

(27)

The above system defines that the incremental evolution of the
problem state variables (27) is constrained by the consistency condi-
tion (26).
Table 8
Identified parameters of the 16p BBC2008 version � aluminum AA5042-H2 (yield
stress ratios at 0.1 of equivalent plastic deformation).

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3
4 2 1.2247 0.3482 �0.7058 �0.0167 0.2308 0.8936
nð1Þ1 nð1Þ2 nð1Þ3 lð2Þ1 lð2Þ2 mð2Þ

1 mð2Þ
2 mð2Þ

3
�0.4052 �0.1255 �0.2100 0.7181 0.3516 �0.5418 �0.5906 0.5994
nð2Þ1 nð2Þ2 nð2Þ3
�0.3338 �0.6684 0.
The major concern regarding a numerical solution of any
boundary value problem involving plastic deformation is how to
ensure the consistency condition (26) is respected on the entire
integration path (Halilovic et al., 2009). According to the NICE
scheme, this is achieved by expanding the consistency condition
into Taylor power series expansion, where higher-order differen-
tials are neglected. The numerical scheme is thus based, provided
the values of the state variables are known at the beginning of the
considered increment, on imposing

Fþ dF ¼ 0 (28)

to be fulfilled in the considered increment, which leads to

Fþ vF
vsij

Dsij þ
vF
vY

DY ¼ 0 (29)

With regard to the forward-Euler approach which uses a dif-
ferential form of the consistency condition, i.e. dF ¼ 0, our
approach considers the additional term F. Though this term should
be zero, because it represents a function whose value should obey
the consistency condition F ¼ 0, numerically this is usually not
true. This small difference between the two explicit schemes, the
NICE and the forward-Euler, is the key reason for a considerable
improvement which is proven by the NICE scheme with respect to
the forward-Euler scheme both in accuracy and stability of the
numerical integration.

From the examination of Eqs. (26) and (27) it follows that the
incremental solution depends on a consistently determined incre-
ment of the plastic multiplier Dl. In the case of adopting the NICE
scheme with the consistency condition considered in its expanded
form (29) the following expression is obtained for the increment of
the plastic multiplier

Dl ¼
Fþ vF

vsij
CijklD 3kl

vF
vsij

Cijkl
vF
vskl

� vF
vY

dY
d 3

p
eq

skl
vF
vskl
Y

(30)

In the cases, where yield function exhibits first order homoge-
neity, the second term of the denominator in Eq. (30) can be
Fig. 5. Planar distribution of r-coefficient predicted by the BBC2008 model for the
AA5042-H2 aluminum alloy (initial yield stress ratios).



Fig. 6. Planar distribution of yield stress ratios predicted by the BBC2008 model for the
AA5042-H2 aluminum alloy (initial yield stress ratios).
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simplified to instantaneous hardening slope. When the increment
of the plastic multiplier Dl is calculated, the incremental solution of
the elasto-plastic model, defined by the evolution equation (27),
can be calculated explicitly from evolution equations.

The numerical integration procedure, see Eqs. (27) and (30),
requires a calculation of the yield functionF(sij,Y) and its respective
derivatives in every increment. For implementation purposes, the
yield function (1) can be rewritten in the following form:

F ¼ s2k
�
sij
	

Y2k
� 1 ¼

bs�sij	
Y2k

� 1 ¼ 0 (31)

The derivatives used in the numerical scheme are now
computed by considering relations (22)�(25) established between
the two functions, F(sij,Y) and Fðs11; s22; s12 ¼ s21;YÞ, which
yields:
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(32)

where
Fig. 7. Planar distribution of r-coefficient predicted by the BBC2008 model for the
AA5042-H2 aluminum alloy (yield stress ratios at 0.1 of equivalent plastic strain).
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Equation (34) are written, due to simplicity, in Voigt notation,

where v
vs ¼ v

vs11
; v
vs22

; v
vs33

; v
vs12

n o
.

Let us remind that according to the explicit approach all the
state variables appearing in the above equations and expressions
are written at the beginning of the considered increment. Once the
increment of the plastic multiplier Dl is calculated, the respective
increments of the other state variables can be readily calculated by
considering (27). The corresponding flow chart of the applied in-
cremental procedure used for the integration of the constitutive
model is presented in Fig. 10.

The described procedure can be used to integrate any of elasto-
plastic constitutive law.
5. Earing prediction using the BBC2008 yield criterion

The constitutive model resulted by considering the associated
flow theory of plasticity and assuming the BBC2008 yield criterion
has been thoroughly discussed in the previous sections. Issues, such
as material parameters characterization and numerical imple-
mentation which are crucial for a physically objective computa-
tional analysis, have been addressed in the previous sections. In this
section we will validate, in order to identify capability of the
constitutive model as well as the effectiveness of the conceived
Fig. 8. Planar distribution of yield stress ratios predicted by the BBC2008 model for the
AA5042-H2 aluminum alloy (yield stress ratios at 0.1 of equivalent plastic strain).



Fig. 9. Normalized yield surfaces predicted by the BBC2008 and CPB06ex2 models for the AA5042-H2 aluminum alloy; a) initial yield ratios, b) yield ratios at 0.1 of equivalent
plastic strains.

M. Vrh et al. / European Journal of Mechanics A/Solids 45 (2014) 59e7468
numerical approach in the analysis of deep drawing processes, the
results obtained from a corresponding computer simulation of the
sheet metal forming process. In particular, two cases of deep
drawing of a round cup made respectively from two aluminum
alloys, AA2090-T3 and AA5042-H2, will be considered. In order to
show the flexibility of the BBC2008 model an additional subsection
will be devoted to a highly anisotropic fictitious material, which
yields, according to the theory, more than eight ears in cup
drawing.

In the modeling of the considered round cup deep drawing only
a quarter section of the cup with the corresponding symmetry
boundary conditions applied is analyzed, due to orthotropic ma-
terial properties. A total of 2560 shell elements with reduced
integration (ABAQUS S4R) and 21 section points through the sheet
thickness are used for the simulation. The implementation of the
Fig. 10. Integration of the constitutive model e incremental procedure.
BBC2008 model with the respective parameters identified for each
of the sheet metals considered is enabled via user material sub-
routine VUMAT.

5.1. Earing prediction for AA2090-T3

In this subsection the BBC2008 model is validated on aluminum
AA2090-T3. The case considered refers to the round cup drawing
experiment and the corresponding computer simulation with the
Yld2004 model, presented in Yoon et al. (2006). The tool geometry
is specified as follows: blank diameter is 158.76 mm, die opening
diameter is 101.48 mm, punch diameter is 97.46 mm, die-profile
radius and punch-profile radius are 12.70 mm both. The initial
thickness of the blank is 1.6 mm and the holder force is of magni-
tude 22.2 kN. The contact conditions are governed by the Coulomb
friction model and magnitude 0.1 being assumed for the friction
coefficient. The material hardening is modeled with the following
stressestrain curve Y ¼ 646ð0:025þ 3

p
eqÞ0:227. The material

anisotropy characterization is described in Section 3, where also the
identified BBC2008 parameters are tabulated.

Fig. 11 displays the plots of the numerically predicted earing
profile (for 8p and 16p BBC2008 version) and the experimentally
established one (Yoon et al., 2006). For the sake of comparison, also
the calculated earing profile with the Yld2004 model (Yoon et al.,
2006) is included.

The simulated predictions with the BBC2008 model are in good
agreement with the results of the Yld2004 model and also with the
experiment (Yoon et al., 2006). As expected, the simulation
considering the 8p BBC2008 version was unable to predict six ears,
which were observed experimentally. On the contrary, the 16p
BBC2008 version simulation predicts the number of ears (six) and
their location correctly, and at least qualitatively, the results are in
good agreement with the experiment.

5.2. Earing prediction for AA5042-H2

The second case considered is a deep drawing simulation of
aluminum AA5042-H2 with the applied process data following
those of the case, investigated in Yoon et al. (2010). The tool ge-
ometry is specified as follows: blank diameter is 76.07 mm, die
opening diameter is 46.74 mm, punch diameter is 45.72 mm, die-
profile radius and punch-profile radius are 2.28 mm both. The
initial thickness of the blank is 0.274 mm and the holder force is of
magnitude 10 kN. The punch displacement is set to be large enough
to pull the whole blank into the die. The friction between the tools



Fig. 11. Experimental vs. numerical earing prediction for aluminum AA2090-T3.

Fig. 12. Experimental vs. numerical earing prediction for AA5042-H2 aluminum alloy (initial yield stress).
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and deforming sheet metal is considered in accordance with the
Coulomb model, the coefficient of friction being 0.008 for all sur-
faces in contact. In this case the Voce hardening law Y ¼ 404:16�
107:17 e�18:416 3

p
eq is assumed to model the work hardening

behavior of the sheet metal.
In Fig. 12 the numerically predicted earing profile and the

experimentally established one (Yoon et al., 2010) are plotted.
The earing profile is defined by the height of the deep drawn cup
h(q) along 1/4-circumference of the cup, as a function of angle q

(angle q ¼ 0� denotes the rolling direction). For the sake of
comparison, also the calculated earing profile with the CPB06ex2
model (Yoon et al., 2010) is included. Both predictions are made
with initial yield stress ratios being considered in parameters
identification.

Another prediction can be made with model parameters, which
were identified considering yield stress ratios at 0.1 of equivalent
plastic strain. Such prediction is shown in Fig. 13, where also pre-
diction of the CPB06ex2 model (Yoon et al., 2010) are included,
considering the same material data.
Fig. 13. Experimental vs. numerical earing prediction for AA5042-H2 alu
Regarding the simulated earing profile plots in Figs. 12 and 13
we can state that the earing profile prediction with the BBC2008
model is in rather good qualitative agreement with experiments,
especially in range 45�e90�. As expected, the 8p version of
BBC2008 is not capable of predicting eight ears; it predicts only four
ears, but cup height in range 45�e90� are predicted quite accu-
rately. The 16p version of the BBC2008 clearly improves the pre-
diction of the 8p version of the BBC2008model in such away, that it
creates additional four ears. In general, it can be concluded, that the
earing prediction of the BBC2008 model is comparable to the pre-
diction of the CPB06ex2 model, proposed by Yoon et al. (2010). The
predicted ears are in the same location and the agreement with the
experimental results is from the qualitative and quantitative point
of view in the same level. It is also interesting to observe, that the
consideration of yield stress ratios at 0.1 of equivalent plastic strain
does not considerably affect prediction of the earing in the case of
the BBC2008 model. This statement is not valid for the CPB06ex2
model, where the consideration of different yield stress ratios gives
quite different prediction of earing, especially at 90�.
minum alloy (yield stress ratios at 0.1 of equivalent plastic strain).



Table 9
Anisotropy characteristics of the fictitious material.

yðexpÞ0� yðexpÞ15� yðexpÞ30� yðexpÞ45+ yðexpÞ60+ yðexpÞ75+ yðexpÞ90+ yðexpÞb
1.0000 1.027 1.067 1.088 1.067 1.027 1.000 1.050
rðexpÞ0� rðexpÞ15+ rðexpÞ30+ rðexpÞ45+ rðexpÞ60+ rðexpÞ75+ rðexpÞ90+

1.500 1.007 1.625 1.458 1.853 1.057 1.502

Fig. 14. Planar distribution of r-coefficient predicted by the BBC2008 model for the
fictitious material.

Fig. 15. Planar distribution of yield stress ratios predicted by the BBC2008 model for
the fictitious material.
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5.3. Example of predicting more than eight ears using fictitious
material

In order to show the flexibility of the BBC2008 model in
modeling of highly anisotropic sheet metal response we follow, in
the sequel, the approach, presented in the paper of Yoon et al.
(2006) and introduce a highly anisotropic fictitious material with
material data generated. The respective normalized yield stresses
and r-values are tabulated in Table 9. The data are generated in such
a way, that according to the well recognized relation between r-
values and ears (Yoon et al., 2006) they yield twelve ears. The key
issue regarding this example is thus associated with the question
whether the BBC2008 model is also capable of predicting twelve
ears in cup simulation.

Parameters of the BBC2008 model were identified in the same
way, as in the case of AA2090-T3 and AA5042-H2 aluminum alloys,
using the procedure described in Section 3. Since 8p version was
unable to reproduce the generated material data, only 16p version
of BBC2008 model was used to model the fictitious material. The
identified parameters are tabulated in Table 10.

The agreement between generated material data and planar
distribution of yield stress ratios and r-values, predicted by the
BBC2008 model, is shown in Figs. 14 and 15, respectively.

By observing Figs. 14 and 15 it can be concluded, that 16p
version of the BBC2008 model is capable of reproducing the
generated data very accurately. In Fig. 16 normalized yield surface
of the BBC2008 16p for the fictitious material is shown.

Finally, it is interesting to observe the earing prediction in cup
drawing simulation for the investigated fictitious material. The case
considered here is a deep drawing simulation of a round cup with
the applied process data following those of the AA5042-H2 case
(see previous Subsection). Fig. 17 presents the respective cup
simulation results e the equivalent plastic strain distribution and
the cup height variation along the circumference. From the latter
the appearance of twelve ears can be clearly observed.

The above example proves that despite of its simple formulation
the BBC2008 model containing 16 parameters for anisotropy
description only is flexible enough to predict more than eight ears
in cup drawing simulation, if needed.
Fig. 16. Normalized yield surface predicted by the 16p version of the BBC2008 for the
6. Conclusion

In this paper the authors have shown an approach to the
modeling of plastic behavior in highly anisotropic sheet metals
which is followed, in order to ensure computationally efficient and
physically objective computer simulation, by the procedures
required in its numerical implementation. Because of the finite
series form that can be, depending on the amount of available
Table 10
Identified parameters of the 16p BBC2008 version.

k s w [
ð1Þ
1 [

ð1Þ
2 mð1Þ

1 mð1Þ
2 mð1Þ

3 nð1Þ1 nð1Þ2
4 2 1.2247 0.6228 �0.6048 0.4973 0.5095 0.0000 0.0000 0.0000
nð1Þ3 lð2Þ1 lð2Þ2 mð2Þ

1 mð2Þ
2 mð2Þ

3 nð2Þ1 nð2Þ2 nð2Þ3
�0.8692 �0.6257 0.6195 �0.4468 0.4596 0.5377 0.1777 0.0071 0.3121

fictitious material.



Fig. 17. Cup drawing simulation for the fictitious material; a) equivalent plastic strain distribution, b) cup height variation along the circumference.
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experimental data, correspondingly expanded to retain more or
less terms, the BBC2008 plane-stress yield criterion has proved to
cope well with the complexity of highly anisotropic plastic
behavior. Of course, to become this statement true a proper ma-
terial characterization had to be done. For that purpose a robust
procedure for the identification of the respective model parameters
is described in the paper. The constitutive equations were inte-
grated numerically by applying the NICE integration scheme which
has proved to be stable, accurate and computationally efficient.
Both the constitutive model and the integration scheme have been
implemented into ABAQUS/Explicit for further finite element
applications.

In order to investigate the capability of the conceived consti-
tutive model in predicting the occurrence of more than four ears in
deep drawing of a round cup from highly anisotropic material, the
sheet metal forming process was numerically simulated with
ABAQUS/Explicit and shell S4R elements used in the finite element
discretization. Undoubtedly, great potential of the BBC2008 model
is proved by the obtained simulation results. Based on the quite
good agreement found between the simulated and experimentally
obtained earing profiles it can be also concluded, that the presented
modeling approach is physically objective and is able to predict
correctly the mechanical response of highly anisotropic sheet
metals under complex loading conditions. In addition, the fictitious
case is introduced in the paper, which shows that the BBC2008
model is able to predict even twelve ears in cup drawing simulation
with the formulation, containing 16 parameters for anisotropy
description only. The investigated case proves great flexibility of the
model despite its simple formulation.

Finally, since the BBC2008 model does not use linear trans-
formations of the stress tensor and absolute value function in the
yield criterion formulation, it is very convenient for implementa-
tion in the finite element programs. Further, due to the fact that in
this paper numerical integration of the evolution equations in the
constitutive model is performed in an improved explicit way, the
computational efficiency of the entire presented approach should
be in general superior in the simulation of sheet metal forming
processes comparing to existing techniques.
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Appendix A

The subsequent analysis will be focused on the convexity of
the yield surface described by Eqs. (1) and (3). Due to the fact that
s � 0, Y > 0, and w > 1, Eq. (1) can be written in the equivalent
form
Jðs11; s22; s12 ¼ s21; YÞ :¼
½sðs11;s22; s12 ¼ s21Þ�2k

w� 1
� Y2k

w� 1

¼
Xs
r¼1

h
wr�1j

ðrÞ
1 þws�rj

ðrÞ
2

i
¼ 0

(A.1)

where (see also Eq. (3))

j
ðrÞ
1 ðs11;s22;s12¼s21;YÞ¼

h
LðrÞþMðrÞ

i2kþhLðrÞ�MðrÞ
i2k

� Y2k

2swr�1ðw�1Þ
jðrÞ
2 ðs11;s22;s12¼s21;YÞ

¼
h
MðrÞþNðrÞ

i2kþhMðrÞ�NðrÞ
i2k� Y2k

2sws�rðw�1Þ;

r¼1;.;s: (A.2)

Eqs. (1) and (A.1) describe the same yield surface, but regarding
the current analysis Eq. (A.1) is more convenient because its left-
side term J is expressed as a positive and linear combination of
two sets of functions, namely jðrÞ

1 and jðrÞ
2 ðr¼1;.;sÞ: In general, the

convexity of each of these functions, jðrÞ
1 and jðrÞ

2 ðr¼1;.;sÞ, in the
space of the stress components s11, s22, and s12 ¼ s21 is a sufficient
condition ensuring that J has the same characteristic (Rockafellar,
1970).

One should also notice that jðrÞ
1 and jðrÞ

2 ðr ¼ 1;.; sÞ are twice
differentiable with respect to variables s11, s22, and s12 ¼ s21. Any
function having this property is convex if and only if its Hessian
matrix is positive semi-definite (Rockafellar, 1970). The manipula-
tion of the Hessian matrices is difficult if jðrÞ

1 and jðrÞ
2 ðr ¼ 1;.; sÞ

are formulated in terms of the actual stress components s11, s22,
and s12 ¼ s21. This task can be simplified by taking into account the
fact that linear transformations preserve the convexity (Rockafellar,
1970). In other words, the positive semi-definite character of the
Hessian matrix corresponding to any of the functions jðrÞ

1 and jðrÞ
2

ðr ¼ 1;.; sÞ may be analyzed in a different space of variables, say
x1,x2,x3, related to the actual stress components s11,s22,s12 ¼ s21 by
properly chosen linear transformations.
Convexity of functions jðrÞ
1 ðr ¼ 1;.; sÞ

Before proceeding to the computation of the Hessianmatrix, it is
convenient to reformulate functions jðrÞ

1 ðr ¼ 1;.; sÞ in terms of
the following variables (see Eqs. (A.2) and (3)):

x1 ¼ [
ðrÞ
1 s11 þ [

ðrÞ
2 s22; x2 ¼ mðrÞ

1 s11 �mðrÞ
2 s22; x3

¼ mðrÞ
3 ðs12 þ s21Þ: (A.3)
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By considering the above transformations functions L(r) andM(r)

in Eq. (3) become

LðrÞ ¼ x1; MðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x23

q
: (A.4)

The components of the Hessian matrix [H]3�3 associated to
any of functions jðrÞ

1 ðr ¼ 1;.; sÞ are easily derivable from Eqs.
(A.2) and (A.4), by using the chain rule. The positive semi-
definite character of [H]3�3 is ensured if the following in-
equalities are valid for all values of variables x1, x2 and x3
(Rockafellar, 1970):

H11 ¼ v2jðrÞ
1

vx1vx1
¼ v2jðrÞ

1
vLðrÞvLðrÞ � 0

det
h
Hab

i
a;b¼1;2

¼ det
�
v2jðrÞ

1
vxavxb



a;b¼1;2

¼ x
2
3

½MðrÞ�3
vjðrÞ

1
vMðrÞ

v2jðrÞ
1

vLðrÞvLðrÞ

þ x22h
MðrÞ

i2
8<: v2j

ðrÞ
1

vLðrÞvLðrÞ
v2j

ðrÞ
1

vMðrÞvMðrÞ �
"

v2j
ðrÞ
1

vLðrÞvMðrÞ

#29=; � 0

det
�
Hij
�
i;j¼1;2;3 ¼ det

"
v2j

ðrÞ
1

vxivxj

#
i;j¼1;2;3

¼ 1
MðrÞ

vj
ðrÞ
1

vMðrÞ

8<: v2j
ðrÞ
1

vLðrÞvLðrÞ
v2j

ðrÞ
1

vMðrÞvMðrÞ �
"

v2j
ðrÞ
1

vLðrÞvMðrÞ

#29=; � 0:

(A.5)

The expressions of the partial derivatives involved in Eq. (A.5)
can be deduced from Eq. (A.2):

vjðrÞ
1

vMðrÞ¼2k
�h

LðrÞþMðrÞ
i2k�1�

h
LðrÞ�MðrÞ

i2k�1
�

v2jðrÞ
1

vLðrÞvLðrÞ¼
v2jðrÞ

1
vMðrÞvMðrÞ ¼2kð2k�1Þ

�h
LðrÞþMðrÞ

i2k�2þ
h
LðrÞ�MðrÞ

i2k�2
�

v2jðrÞ
1

vLðrÞvMðrÞ¼2kð2k�1Þ
�h

LðrÞþMðrÞ
i2k�2�

h
LðrÞ�MðrÞ

i2k�2
�
:

(A.6)

By combining the above formulae, one obtains

v2j
ðrÞ
1

vLðrÞvLðrÞ
v2j

ðrÞ
1

vMðrÞvMðrÞ �
"

v2j
ðrÞ
1

vLðrÞvMðrÞ

#2

¼ ½4kð2k� 1Þ�2
h
LðrÞ þMðrÞ

i2k�2h
LðrÞ �MðrÞ

i2k�2 � 0: (A.7)

Due to the property (see Eq. (A.4))

MðrÞ � 0; (A.8)

the following inequality is also satisfied:

LðrÞ þMðrÞ � LðrÞ �MðrÞ: (A.9)

As a consequence,h
LðrÞ þMðrÞ

i2k�1 �
h
LðrÞ �MðrÞ

i2k�1
(A.10)

if k is a strictly positive integer number. The constraint k˛Nnf0g is
thus sufficient for having (see Eqs. (A.6) and (A.7))

vj
ðrÞ
1

vMðrÞ � 0;
v2j

ðrÞ
1

vLðrÞvLðrÞ
� 0: (A.11)
When analyzing Eqs. (A.5)e(A.11), one may easily notice that
k˛Nnf0g ensures the positive semi-definite character of the Hes-
sian matrix associated to any of functions jðrÞ

1 ðr ¼ 1;.; sÞ in the
(x1,x2,x3) space. Due to linearity of the transformations given by Eq.
(A.3), this conclusion remains valid in the space of the actual stress
components (s11,s22,s12 ¼ s21).

Convexity of functions jðrÞ
2 ðr ¼ 1;.; sÞ

As in the previous analysis, it is convenient to reformulate
functions jðrÞ

2 ðr ¼ 1;.; sÞ in terms of the following variables (see
Eqs. (A.2) and (3)):

x1 ¼ mðrÞ
1 s11 �mðrÞ

2 s22; x2 ¼ nðrÞ1 s11 � nðrÞ2 s22; x3

¼ s12 þ s21 (A.12)

which transforms functions M(r) and N(r) in Eq. (3) into

MðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ

h
mðrÞ

3 x3

i2r
; NðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ

h
nðrÞ3 x3

i2r
: (A.13)

The positive semi-definite character of the Hessian matrix
[H]3�3 associated to any of the functions jðrÞ

2 ðr ¼ 1;.; sÞ is
ensured if the following inequalities are valid for all values of var-
iables x1, x2 and x3 :
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The expressions of the partial derivatives involved in Eq. (A.14)
can be deduced from Eq. (A.2):
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By combining the above formulae, one obtains
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Due to the property (see Eq. (A.13))

MðrÞ � 0; NðrÞ � 0; (A.18)

the following inequalities are also satisfied:

MðrÞ þ NðrÞ � MðrÞ � NðrÞ; NðrÞ þMðrÞ � NðrÞ �MðrÞ: (A.19)
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if k is a strictly positive integer number. The constraint k˛Nnf0g is
thus sufficient for having (see Eqs. (A.15)e(A.17))

vj
ðrÞ
2

vMðrÞ � 0;
vj

ðrÞ
2

vNðrÞ � 0;
v2j

ðrÞ
2

vMðrÞvMðrÞ ¼ v2j
ðrÞ
2

vNðrÞvNðrÞ � 0: (A.21)

One may conclude, on the basis of Eqs. (A.14)e(A.21), that
k˛Nnf0g is a sufficient condition for ensuring the positive semi-
definite character of the Hessian matrix associated to any of the
functions jðrÞ

2 ðr ¼ 1;.; sÞ in the ðx1; x2; x3Þ space. Due to linearity
of the transformations given by Eq. (A.12), this property will be
preserved in the space of the actual stress components
(s11,s22,s12 ¼ s21).

As according to Eq. (A.1) function J is a linear and positive
combination of functions jðrÞ

1 and jðrÞ
2 ði ¼ 1;.; sÞ, the condition

k˛Nnf0g ensures the convexity of the yield surface described by
Eqs. (1) and (3). From this point of view there is no constraint acting
on the admissible values of the other material parameters included
in the expression of the equivalent stress.
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